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Abstract

In this paper we discuss the well known multivariate Behrens-Fisher prob-
lem which deals with testing the equality of two normal mean vectors under
heteroscedasticity of dispersion matrices. Some existing tests are reviewed
and a new test based on Roy’s union-intersection principle coupled with the
generalized P -value is proposed. The tests are compared with respect to size
and power based on simulation, and applied to a few useful data sets.
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1. Introduction

It is well known that the univariate Behrens-Fisher problem deals with
statistical inference concerning the difference between the means of two uni-
variate normal populations with unequal variances. Except for some simple
exact but inefficient test procedures, most of the widely used solutions which
have been recommended for the more general ANOVA problem under het-
eroscedasticty are approximate in nature (Hartung, Knapp and Sinha, 2006).

For the multivariate Behrens-Fisher problem which deals with testing
the equality of two mean vectors under heteroscedastic dispersion matrices,
finding reasonable solutions is even harder. Recently there has been some
progress to solve this problem, generalizing some univariate approximate
solutions and generalized P -value based exact solutions to the multivariate
case.

In this paper we provide a complete review of all the existing methods and
suggest a new test procedure, exploiting Roy’s union-intersection principle

(1957) coupled with Weerahandi’s generalized P -value concept. We compare
the size and power of some test procedures via simulation. A few applications
are also included.

Section 2 contains notations and a survey of existing results. The new
test is developed in Section 3. Simulation results are reported in Section 4
and applications are mentioned in Section 5.

2. Notations and existing results

Consider two p-variate normal populations N(µ1, Σ1) and N(µ2, Σ2) where
µ1 and µ2 are unknown p × 1 vectors and Σ1 and Σ2 are unknown p × p
positive definite matrices. Let Xα1 ∼ N(µ1, Σ1), α = 1, 2, ...., n1, and
Xα2 ∼ N(µ2, Σ2), α = 1, 2, ...., n2, denote random samples from these two
populations, respectively. We are interested in the testing problem

H0 : µ1 = µ2 vs H1 : µ1 6= µ2. (1)

For i = 1, 2, let
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X̄i =
1

ni

ni
∑

α=1

Xαi, (2)

Ai =
ni
∑

α=1

(Xαi − X̄i)(Xαi − X̄i)
′ (3)

Si = Ai/(ni − 1), i = 1, 2. (4)

Then X̄1, X̄2, A1 and A2, which are sufficient for the mean vectors and
dispersion matrices, are independent random variables having the distribu-
tions:

X̄i ∼ N(µi,
Σi

ni
), and Ai ∼ Wp(ni − 1, Σi), i = 1, 2 (5)

where Wp(r, Σ) denotes the p−dimensional Wishart distribution with df = r
and scale matrix Σ. Here is a brief review of most of the existing results in
the literature for testing H0 versus H1.

Define

S̃i = Si/ni, i = 1, 2, S̃ = S̃1 + S̃2, T
2 = (X̄1 − X̄2)

′S̃−1(X̄1 − X̄2). (6)

It should be noted that the test based on T 2 is a natural invariant test based
on the union-intersection principle.

1. Yao (1965)’s invariant test. This is a multivariate extension of the
Welch approximate d.f. solution, and is based on T 2 ∼ (νp/(ν − p +
1))Fp,ν−p+1 with the d.f. ν given by

ν =

[

1

n1

(

X̄ ′
dS̃

−1S̃1S̃
−1X̄d

X̄dS̃−1X̄d

)

+
1

n2

(

X̄ ′
dS̃

−1S̃2S̃
−1X̄d

X̄dS̃−1X̄d

)]−1

(7)

2. Johansen (1980)’s invariant test (see also Tang and Algina, 1993). We
use T 2 ∼ qFp,ν where
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q = p + 2D − 6D/[p(p − 1) + 2], ν = p(p + 2)/3D (8)

D =
1

2

2
∑

i=1

{tr[(I − (S̃−1

1 + S̃−1

2 )−1S̃−1

i )2] + tr[(I − (S̃−1

1 + S̃−1

2 )−1S̃−1

i )]2}/ni

3. Nel and Van der Merwe (1986)’s noninvariant solution. Here we use
T 2 ∼ (νp/(ν − p + 1))Fp,ν−p+1 except that ν is defined by

νNV M =
tr(S̃2) + [tr(S̃)]2

(1/n1){tr(S̃2
1) + [tr(S̃1)]2} + (1/n1){tr(S̃2

2) + [tr(S̃2)]2}
(9)

4. Krishnamoorthy and Yu (2004)’s modified Nel/Van der Merwe invari-
ant solution. We use the same idea as before, namely, T 2 ∼ (νp/(ν −
p + 1))Fp,ν−p+1 with the d.f. ν defined by νKY = (p + p2)/C(S̃1, S̃2)

C(S̃1, S̃2) =
1

n1

{tr[(S̃1S̃
−1)2] + [tr(S̃1S̃

−1)]2}

+
1

n2

{tr[(S̃2S̃
−1)2] + [tr(S̃2S̃

−1)]2} (10)

5. Kim (1992)’s test. Kim suggested a variation of T 2, given by

T̃ 2 = (X̄1 − X̄2)
′[S̃1 + r2S̃2 + 2rQ(S̃1, S̃2)]

−1(X̄1 − X̄2). (11)

where r = [det(S̃1S̃
−1
2 )]1/2p, and Q(S̃1, S̃2) = S̃

1/2

2 [S̃
−1/2

2 S̃1S̃
−1/2

2 ]1/2S̃
1/2

2 .

There are two drawbacks of Kim’s (1992) test: it is not invariant and
its type I error is below the nominal level most of the time.

6. Christensen and Rencher (1997). Based on extensive numerical results
concerning the type I error and power, these authors recommend the
approximate solution due to Kim (1992) mentioned above for testing
(1) because many approximate tests have type I errors exceeding the
nominal level.
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7. Weerahandi (1995). The concepts of generalized p−values and gen-
eralized confidence regions were introduced by Tsui and Weerahandi
(1989) and Weerahandi (1993), and applied to many nontrivial infer-
ence problems, including the Behrens-Fisher problem.

Here is a brief review of the generalized p-value approach. Let X be a
random variable whose distribution depends on the parameters (θ, δ),
where θ is a scalar parameter of interest and δ represents nuisance
parameters. Suppose we want to test H0 : θ ≤ θ0 vs H1 : θ > θ0, where
θ0 is a specified value.

Let x denote the observed value of X and consider the generalized test

variable T (X; x, θ, δ), which also depends on the observed value and
the parameters, and satisfies the following conditions:

(a) The distribution of T (X; x, θ0, δ) is free of the nuisance parameter
δ,

(b) The observed value of T (X; x, θ0, δ), i.e., T (x; x, θ0, δ), is free of δ,
and

(c) P [T (X; x, θ, δ) ≥ t] is nondecreasing in θ, for fixed x and δ.

Then the generalized p−value is defined by

P [T (X; x, θ0, δ) ≥ t],

where t = T (x; x, θ0, δ). It should be noted that, unlike the regular p
values, the generalized p value does not follow a uniform distribution
under the null hypothesis, and moreover, the type I error probability of
a test based on the generalized p−value, and the coverage probability
of a generalized confidence interval, may depend on the nuisance pa-
rameters. For further details and for applications, we refer to the book
by Weerahandi (1995). For the univariate Behrens-Fisher problem, a
test based on the generalized p−value is given in Tsui and Weerahandi
(1989). For the multivariate Behrens-Fisher problem, an upper bound
for the generalized p−value is given in Gamage (1997).

8. Gamage et al.(2004) explored the concept of the generalized p−value for
testing the hypotheses in (1), and also for MANOVA problem involving
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more than two normal populations. They were able to construct a gen-
eralized test variable whose observed value is (x̄1− x̄2)

′( s1

n1

+ s2

n2

)−1(x̄1−
x̄2), a very natural quantity based on the sufficient statistics for the
testing problem (1). Here x̄1 and x̄2 denote the observed values of X̄1

and X̄2, respectively, and s1 and s2 denote the observed values of the
sample covariance matrices S1 and S2 defined in (4). The computation
of the generalized p−value as well as some numerical results on the
type I error probabilities of the test based on the generalized p−value
are reported in their paper. It turns out that the type I error probabil-
ities are all below the nominal level. In other words, the test based on
the generalized p−value, which is an exact probability of an extreme
region, also provides a conservative test in the classical sense.

To describe the above generalized p-value based test procedure, define

Y1 =
(

s1

n1

+
s2

n2

)−1/2

X̄1,

Y2 =
(

s1

n1

+
s2

n2

)−1/2

X̄2,

V1 = (
n1 − 1

n1

)
(

s1

n1

+
s2

n2

)−1/2

S1

(

s1

n1

+
s2

n2

)−1/2

,

V2 = (
n2 − 1

n2

)
(

s1

n1

+
s2

n2

)−1/2

S2

(

s1

n1

+
s2

n2

)−1/2

,

θ1 =
(

s1

n1

+
s2

n2

)−1/2

µ1, θ2 =
(

s1

n1

+
s2

n2

)−1/2

µ2,

Λ1 =
(

s1

n1

+
s2

n2

)−1/2 Σ1

n1

(

s1

n1

+
s2

n2

)−1/2

,

Λ2 =
(

s1

n1

+
s2

n2

)−1/2 Σ2

n2

(

s1

n1

+
s2

n2

)−1/2

(12)

where by A1/2 we mean the positive definite square root of the positive
definite matrix A, and A−1/2 = (A1/2)−1. Then

Y1 ∼ N(θ1, Λ1), Y2 ∼ N(θ2, Λ2), (13)

V1 ∼ Wp(n1 − 1, Λ1), V2 ∼ Wp(n2 − 1, Λ2) (14)
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and the testing problem (1) can be expressed as

H0 : θ1 = θ2, vs H1 : θ1 6= θ2. (15)

Let y1, y2, v1 and v2 denote the observed values of Y1, Y2, V1 and V2,
respectively. Note that these observed values are obtained by replacing
X̄1, X̄2, S1 and S2 by the corresponding observed values (namely, x̄1,
x̄2, s1 and s2) in the expressions for Y1, Y2, V1 and V2 in (12). Then
we have the distributions

Z = (Λ1 + Λ2)
−1/2(Y1 − Y2) ∼ N(0, Ip), under H0,

R1 =
[

v
−1/2

1 Λ1v
−1/2

1

]−1/2[

v
−1/2

1 V1v
−1/2

1

][

v
−1/2

1 Λ1v
−1/2

1

]−1/2

∼ Wp(n1 − 1, Ip),

R2 =
[

v
−1/2

2 Λ2v
−1/2

2

]−1/2[

v
−1/2

2 V2v
−1/2

2

][

v
−1/2

2 Λ2v
−1/2

2

]−1/2

∼ Wp(n2 − 1, Ip). (16)

Now define

T1 = Z′

[

v
1/2

1 R−1

1 v
1/2

1 + v
1/2

2 R−1

2 v
1/2

2

]

Z. (17)

Note that given R1 and R2, T1 is a positive definite quadratic form
in Y1 − Y2 (where Y1 and Y2 have the distributions in (13)), and
T1 is stochastically larger under H1 than under H0. Also, since the
distributions of Z, R1 and R2 are free of any unknown parameters
(under H0) and since these quantities are independent, it follows that
the distribution of T1 is free of any unknown parameters (under H0).
Using the definition of Z, R1 and R2, we conclude that

the observed value of T1 = (y1 − y2)
′(y1 − y2)

= (x̄1 − x̄2)
′

(

s1

n1

+
s2

n2

)−1

(x̄1 − x̄2)

= t1 (say), (18)

which also does not depend on any unknown parameters. In other
words, T1 is a generalized test variable. Hence the generalized p-value
is given by
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P (T1 ≥ t1|H0) (19)

where T1 and t1 are given in (17) and (18), respectively.

Computation of the generalized P -value based on a suitable represen-
tation of T1 is discussed in Gamage et al. (2004).

9. Gamage et al. (2004) suggested another test for the multivariate Behrens-
Fisher problem, which is different from the one mentioned above. This
is based on the matrix identity:

(n1Σ
−1

1 + n2Σ
−1

2 )−1 =
Σ1

n1

(

Σ1

n1

+
Σ2

n2

)−1 Σ2

n2

=
Σ2

n2

(

Σ1

n1

+
Σ2

n2

)−1 Σ1

n1

,

resulting in the generalized test variable T2 given by

T2 =
(X̄1 − X̄2)

′(Σ1

n1

+ Σ2

n2

)−1(X̄1 − X̄2)

(x̄1 − x̄2)′
[

1

n1

s
1/2

1 R∗−1

1 s
1/2

1 + 1

n2

s
1/2

2 R∗−1

2 s
1/2

2

]−1

(x̄1 − x̄2)
. (20)

The generalized p-value based on the generalized test variable T2 in
(20) is given by

P
(

T2 ≥ 1
∣

∣

∣

∣

H0

)

. (21)

An unfortunate feature of this generalized p-value is that it is not invari-
ant under nonsingular transformations, unlike the generalized p-value
defined earlier in (19).

8



3. A new test procedure

To describe the new test based an an application of Roy’s union-intersection
principle and Weerahandi’s generalized P -value idea, let us first look at the
familiar Hotelling’s T 2 test dealing with a test for the mean vector of a single
multivariate normal population N [µ, Σ]. Denoting by X̄ the sample mean
vector and by S the sample Wishart matrix, Hotelling’s T 2 is essentially
given by

T 2 = (X̄ − µ)S−1(X̄ − µ) (22)

and the test for µ rejects the null hypothesis when T 2 exceeds its observed
value

T 2

obs = (x̄ − µ)′s−1(x̄ − µ) (23)

where x̄ and s are the observed entities.
Roy’s derivation of T 2 is based on the univariate t test for a linear function

of µ, say a′µ, using

t2(a) = [a′(X̄ − µ)]2/[a′Sa] (24)

and rejecting a hypothesis for µ when t2(a) exceeds its observed value

t2obs(a) = [a′(x̄ − µ)]2/[a′sa]. (25)

Hotelling’s T 2 test based on (22) and (23) then follows upon combining
such tests from (24) and (25) for all nonnull vectors a, resulting in the P -value

P = P [supa6=0t
2(a) > supa6=0t

2
obs(a)]. (26)

We are now in a position to describe the new test for the multivariate
Behrens-Fisher problem. Towards this end, we consider Weerahandi’s gener-
alized P -value solution for the univariate Behrens-Fisher problem and then
apply Roy’s principle as described above to extend the solution from the
univariate case to the multivariate case.

Consider two univariate normal populations N [µ1, σ
2
1] and N [µ2, σ

2
2] and

the problem of drawing inference about µ1 −µ2 based on random samples of
sizes n1 and n2 from the two populations, respectively. Denoting the sample
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means and sample sums of squares by (X̄1, X̄2, S
2
1 , S

2
2), and their observed

values by (x̄1, x̄2, s
2
1, s

2
2), Weerahandi’s (1995) test variable T (.) is given by

T (X̄1, X̄2, S
2

1 , S
2

2 ; x̄1, x̄2, s
2

1, s
2

2; µ1, µ2, σ
2

1, σ
2

2)

= (X̄1 − X̄2)

(

σ2
1

n1

+
σ2

2

n2

)−1/2 (

σ2
1 s2

1

S2
1n1

+
σ2

2s
2
2

S2
2n2

)1/2

(27)

with its observed value as Tobs = x̄1 − x̄2. The generalized P -value against
one-sided alternative is then obtained from

P = P (T ≥ x̄1 − x̄2)

= P



Z

(

1

U1

s2
1

n1

+
1

U2

s2
2

n2

)1/2

≥ x̄1 − x̄2



 (28)

where Z ∼ N(0, 1), U1 = S2
1/σ

2
1 ∼ χ2

n1−1 and U2 = S2
2/σ

2
2 ∼ χ2

n2−1.
For both-sided alternatives, the generalized P value is given by

P = P

[

Z2

(

1

U1

s2
1

n1

+
1

U2

s2
2

n2

)

≥ (x̄1 − x̄2)
2

]

(29)

which can also be expressed as

P = P

[

(X̄1 − X̄2)
2

(
σ2

1

n1

+
σ2

2

n2

)
≥

(x̄1 − x̄2)
2

(
s2

1

U1n1

+
s2

2

U2n2

)

]

. (30)

Returning to the multivariate case, we select a linear function a′(µ1−µ2)
and apply the above test variable T (.) defined in (27) based on (a′X̄1, a

′X̄2, a
′S1a, a′S2a)

and its observed value (a′x̄1, a
′x̄2, a

′s1a, a′s2a), resulting in T (a) and hence
the P -value, P (a) as

P (a) = P

[

(a′X̄1 − a′X̄2)
2(

a′Σ1a

n1

+
a′Σ2a

n2

)−1 (31)

≥ (a′x̄1 − a′x̄2)
2(

a′Σ1aa
′s1a

a′S1an1

+
a′Σ2aa

′s2a

a′S2an2

)−1

]

.

We now use the fact that for any a 6= 0, a′Sia/a′Σia = Ui ∼ χ2
ni−1,

i = 1, 2, and

10



supa6=0(a
′X̄1 − a′X̄2)

2(
a′Σ1a

n1

+
a′Σ2a

n2

)−1 (32)

= (X̄1 − X̄2)
′(

Σ1

n1

+
Σ2

n2

)−1(X̄1 − X̄2)

∼ χ2
p

and

supa6=0

(a′x̄1 − a′x̄2)
2

(a′s1a

U1n1

+ a′s2a

U2n2

)
(33)

= (x̄1 − x̄2)
′(

s1

U1n1

+
s2

U2n2

)−1(x̄1 − x̄2).

Finally, applying Roy’s principle, we get the generalized P -value of the
new test procedure as

P
[

χ2

p > (x̄1 − x̄2)
′(

s1

U1n1

+
s2

U2n2

)−1(x̄1 − x̄2)
]

(34)

where U1 ∼ χ2
n1−1 and U2 ∼ χ2

n2−1. It is interesting to note the similarity
of the new test procedure with the one suggested in Gamage et al. (2004),
although carrying out our test is much easier. Simulation results showing
the size and power of this and other tests are given in the next section.

4. Simulation

Simlations studies are based on Krishnamoorthy and Yu (2004). We compute
the size and the power when p = 2. Σ̃1 = Λ and Σ̃2 = I−Λ where Σ̃i = Σi/ni

and Λ = diag(λ1, λ2). The noncentrality parameter is δ = (µ1 − µ2)
′(Σ̃1 +

Σ̃2)(µ1 − µ2) and the mean vectors are chosen such that µ1 − µ2 = (
√

δ/p)1

where 1 is the vector of ones. δ is taken as 0, 2, 4, 8, 16, and (n1, n2) = (6, 12)
and (12, 12) as in Krishnamoorthy and Yu (2004). We consider 6 tests in
Table 1 and Table 2, namely Tests 1-6; Test 1 : Yao’s test(1965), Test 2 :
Johansen’s test(1980), Test 3 : Krishnamoorthy and Yu’s test(2004), Test 4
: T1 in Gamage et al.(2004), Test 5 : T2 in Gamage et al.(2004) and Test 6 :
Proposed new test.
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Table 1: n1 = 6 and n2 = 12
δ

(λ1, λ2) Test 0 2 4 8 16

(0.1,0.1) Test1 0.051 0.191 0.341 0.612 0.900
Test2 0.051 0.193 0.345 0.617 0.903
Test3 0.050 0.190 0.340 0.612 0.901
Test4 0.033 0.157 0.286 0.545 0.848
Test5∗ 0.130 0.346 0.534 0.798 0.966
Test6 0.040 0.146 0.289 0.563 0.871

(0.2,0.5) Test1 0.049 0.186 0.342 0.623 0.907
Test2 0.051 0.190 0.347 0.628 0.910
Test3 0.050 0.188 0.344 0.625 0.908
Test4 0.022 0.116 0.216 0.475 0.817
Test5∗ 0.095 0.286 0.480 0.750 0.956
Test6 0.024 0.129 0.240 0.497 0.832

(0.2,0.7) Test1 0.048 0.186 0.338 0.612 0.901
Test2 0.050 0.190 0.344 0.617 0.904
Test3 0.049 0.187 0.340 0.613 0.901
Test4 0.028 0.112 0.211 0.442 0.795
Test5∗ 0.096 0.300 0.484 0.738 0.952
Test6 0.030 0.133 0.239 0.504 0.824

(0.1,0.9) Test1 0.047 0.179 0.331 0.598 0.895
Test2 0.053 0.189 0.340 0.606 0.897
Test3 0.050 0.185 0.334 0.599 0.894
Test4 0.028 0.108 0.213 0.400 0.770
Test5∗ 0.096 0.308 0.476 0.744 0.954
Test6 0.037 0.153 0.266 0.524 0.852

(0.5,0.5) Test1 0.048 0.187 0.342 0.612 0.898
Test2 0.049 0.190 0.346 0.619 0.904
Test3 0 048 0.187 0.342 0.615 0.902
Test4 0.018 0.111 0.216 0.430 0.778
Test5∗ 0.102 0.296 0.474 0.732 0.948
Test6 0.020 0.125 0.233 0.474 0.804

(0.9,0.9) Test1 0.064 0.181 0.350 0.524 0.802
Test2 0.059 0.182 0.313 0.544 0.827
Test3 0.054 0.171 0.295 0.519 0.807
Test4 0.037 0.124 0.224 0.423 0.675
Test5∗ 0.148 0.364 0.506 0.738 0.952
Test6 0.059 0.169 0.286 0.468 0.759
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Table 2: n1 = n2 = 12
δ

(λ1, λ2) Test 0 2 4 8 16

(0.1,0.1) Test1 0.053 0.193 0.347 0.617 0.900
Test2 0.052 0.194 0.350 0.621 0.904
Test3 0.051 0.191 0.346 0.617 0.901
Test4 0.052 0.190 0.368 0.635 0.906
Test5∗ 0.141 0.358 0.562 0.809 0.967
Test6 0.049 0.189 0.356 0.625 0.905

(0.2,0.5) Test1 0.048 0.196 0.360 0.646 0.920
Test2 0.049 0.197 0.362 0.648 0.921
Test3 0.049 0.196 0.361 0.647 0.920
Test4 0.040 0.192 0.373 0.668 0.909
Test5∗ 0.120 0.324 0.535 0.794 0.972
Test6 0.032 0.169 0.333 0.634 0.903

(0.2,0.7) Test1 0.049 0.196 0.364 0.646 0.923
Test2 0.050 0.199 0.366 0.647 0.924
Test3 0.049 0.198 0.365 0.646 0.923
Test4 0.039 0.186 0.360 0.656 0.911
Test5∗ 0.117 0.334 0.522 0.791 0.972
Test6 0.033 0.169 0.330 0.639 0.905

(0.1,0.9) Test1 0.047 0.193 0.356 0.641 0.922
Test2 0.050 0.198 0.361 0.643 0.922
Test3 0.049 0.197 0.359 0.641 0.921
Test4 0.038 0.169 0.332 0.625 0.897
Test5∗ 0.117 0.349 0.515 0.791 0.975
Test6 0.041 0.179 0.348 0.644 0.910

(0.5,0.5) Test1 0.048 0.198 0.362 0.650 0.925
Test2 0.048 0.199 0.364 0.652 0.926
Test3 0.048 0.198 0.363 0.651 0.926
Test4 0.036 0.209 0.378 0.671 0.915
Test5∗ 0.108 0.332 0.524 0.788 0.966
Test6 0.027 0.171 0.315 0.612 0.902

(0.9,0.9) Test1 0.052 0.194 0.345 0.614 0.900
Test2 0.052 0.194 0.347 0.618 0.903
Test3 0.051 0.192 0.343 0.614 0.901
Test4 0.051 0.217 0.360 0.729 0.901
Test5∗ 0.133 0.373 0.558 0.815 0.976
Test6 0.048 0.206 0.348 0.621 0.898
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We conclude from the two tables that most of the tests except the non-
invariant Test 5 proposed by Gamage et al. (2004) are quite reasonable in
terms of both size and power.

5. Two applications

In this section, we consider two applications of the preceding tests. Our
first application involves comparing two types of coating for resistance to
corrosion based on paired data of size 15. The data is taken from Kramer
and Jensen (1969) and also reported in Rencher (2002). Here is the data.

Table 3: Depth of Maximum Pits
Coating 1 Coating 2

Depth Number Depth Number
Location y1 y2 x1 x2

1 73 31 51 35
2 43 19 41 14
3 47 22 43 19
4 53 26 41 29
5 58 36 47 34
6 47 30 32 26
7 52 29 24 19
8 38 36 43 37
9 61 34 53 24
10 56 33 52 27
11 56 19 57 14
12 34 19 44 19
13 55 26 57 30
14 65 15 40 7
15 75 18 68 13

The 6 tests applied on this data set result in the following p-values.
Again, except Test 5, all the other tests result in the acceptance of the

null hypothesis.
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Table 4: p-values for corrosion data
Test Test 1 Test 2 Test 3 Test 4 Test 5 Test 6
p-value 0.1072 0.1047 0.1076 0.1065 0.0428 0.1358

Our second example deals with student’s essay data taken from Kramer(1972)
and also reported in Rencher (2002). The variables recorded were the number
of words and the number of verbs for 15 students, and the testing problem
was to compare the mean performances under formal and informal instruc-
tions.

Table 5: Number of Words and Number of Verbs
Informal Formal

Words Verbs Words Verbs
Student y1 y2 x1 x2

1 148 20 137 15
2 159 24 164 25
3 144 19 224 27
4 103 18 208 33
5 121 17 178 24
6 89 11 128 20
7 119 17 154 18
8 123 13 158 16
9 76 16 102 21
10 217 29 214 25
11 148 22 209 24
12 151 21 151 16
13 83 7 123 13
14 135 20 161 22
15 178 15 175 23

Based on the p-values reported in Table 6, we conclude that all tests
except Test 5 accept the null hypothesis.
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Table 6: p-values for essay data
Test Test 1 Test 2 Test 3 Test 4 Test 5 Test 6
p-value 0.0960 0.0720 0.0721 0.0670 0.0293 0.0954
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