ANALISIS NUMERICO — Práctica 4

2^{do} Cuatrimestre 2004

Ejercicio 1 Dar dos ejemplos de formas bilineales $(a_{i,j})$ diferentes, que corresponden a formas variacionales distintas, pero den lugar al mismo operador diferencial.

Ejercicio 2 Sea Ω un dominio acotado en \mathbb{R}^n , n=1,2,3. Sea T_h una subdivisión de Ω en elementos K (intervalos en \mathbb{R} , triángulos o cuadriláteros en \mathbb{R}^2 , tetraedros en \mathbb{R}^3). Probar que una función definida en todo Ω y que es polinomial en cada elemento, pertenece a $H^1(\Omega)$ si y sólo si es continua en Ω .

Ejercicio 3 Encontrar la dimensión de los siguientes espacios de funciones, definidas sobre un elemento K en \mathbb{R}^2 :

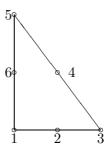
- i) funciones lineales
- ii) funciones cuadráticas
- iii) $P_r(K) = \{v : ves \text{ un polinomio de grado } \leq r \text{ sobre } K\}$
- iv) funciones bilineales ($v = a_0 + a_1x + a_2y + a_3xy$).

Ejercicio 4 Sea C_h una triangulación de un dominio acotado con frontera poligonal $\Omega \subset \mathbb{R}^2$ (es decir, una subdivisión de Ω en triángulos que no se superponen, y tal que los vértices de ningún triángulo se encuentran sobre los lados de otro triángulo).

- i) Sea V_h el espacio de funciones continuas definidas en Ω , lineales en cada triángulo de C_h . Probar que una función en V_h está unívocamente determinada por su valor en los nodos de C_h (incluyendo los pertenecientes al borde de Ω). Verificar que la función resulta continua.
- ii) Sea V_h el espacio de funciones continuas definidas en Ω , cuadráticas en cada triángulo de C_h . Probar que una función en V_h está unívocamente determinada por ejemplo por su valor en los nodos de C_h (incluyendo los pertenecientes al borde de Ω) y en el punto medio de cada lado de los elementos de C_h .

Ejercicio 5 Sea T_h una triangulación de un dominio acotado con frontera poligonal $\Omega \subset \mathbb{R}^2$. Sea V_h el espacio de funciones continuas definidas en Ω , cuadráticas en cada triángulo de T_h .

- i) Explicar como elegiría los nodos en cada triángulo para garantizar que una función en V_h está unívocamente determinada por su valor en los nodos elegidos.
- ii) Considere ahora el triángulo de referencia y los nodos n_j , $1 \le j \le 6$ como se indica en la Figura. Hallar ϕ_i , $1 \le i \le 6$ las funciones en V_h que satisfacen $\phi_i(n_j) = \delta_{ij}$.



Ejercicio 6 Sea Q un rectángulo en \mathbb{R}^2 , con lados paralelos a los ejes. Considerar una subdivisión C_h de Q en subrectángulos que no se solapan tal que ningún vértice de ningún rectángulo pertenece al lado de otro rectángulo. Sea V_h el conjunto de funciones continuas definidas en Q, bilineales en cada subrectángulo. Probar que un elemento de V_h está unívocamente determinado por su valor en los nodos de C_h (incluyendo los nodos en el borde de Q).

Ejercicio 7 Probar que las normas

$$||u||_{W^{1,2}} = ||u||_{L^2} + \sum_{i=1}^n \left\| \frac{\partial u}{\partial x_i} \right\|_{L^2}$$

у

$$||u||_{H^1} = \left(||u||_{L^2}^2 + \sum_{i=1}^n \left|\left|\frac{\partial u}{\partial x_i}\right|\right|_{L^2}^2\right)^{1/2}$$

son equivalentes. Verificar que la norma de H^1 se deriva de un producto escalar.

Ejercicio 8 Considerar el problema: encontrar $u:\overline{\Omega}\longrightarrow \mathbb{R},\ \Omega\in\mathbb{R}^n$ un abierto acotado, tal que:

$$\begin{cases} -\triangle u + u = f \text{ en } \Omega \\ u = 0 \text{ sobre } \Gamma = \partial \Omega \end{cases}$$

con f una función prefijada en $C(\overline{\Omega})$.

- i) ¿Qué se considera una solución clásica del problema?
- ii) ¿Cómo definiría una solución débil?
- iii) Probar que toda solución clásica es una solución débil.
- iv) Probar que existe una solución única en $H_0^1(\Omega)$ de la formulación débil.

Ejercicio 9 Considerar el problema: encontrar $u:\overline{\Omega}\longrightarrow \mathbb{R},\ \Omega\in\mathbb{R}^n$ un abierto acotado de clase C^1 , tal que:

$$\begin{cases} -\triangle u + u = f \text{ en } \Omega \\ \frac{\partial u}{\partial n} = 0 \text{ sobre } \Gamma = \partial \Omega \end{cases}$$

con f una función prefijada en $C(\overline{\Omega})$.

- i) Defina solución clásica y débil para este problema.
- ii) Probar que toda solución clásica es una solución débil.
- iii) Probar que existe una solución única en $H^1(\Omega)$ de la formulación débil.

Ejercicio 10 Sea $\Omega \subset \mathbb{R}^n$ un abierto acotado. Sean $a_{i,j} \in C^1(\overline{\Omega}), 1 \leq i, j \leq n$ que verifican la condición de elipticidad:

$$\sum_{i,j=1}^{n} a_{i,j}(x)\chi_i\chi_j \ge \alpha|\chi|^2 \quad \forall x \in \Omega, \quad \forall \chi \in \mathbb{R}^n, \quad \alpha > 0$$

Sea también $a_0(x) \in C(\overline{\Omega})$. Se busca una función $u : \overline{\Omega} \longrightarrow \mathbb{R}$ que verifique:

$$\begin{cases} -\sum_{i,j=1}^{n} \frac{\partial}{\partial x_{j}} \left(a_{i,j} \frac{\partial u}{\partial x_{i}} \right) + a_{0} u = f \text{ en } \Omega \\ u = 0 \text{ sobre } \Gamma = \partial \Omega \end{cases}$$

- i) Defina solución clásica y débil para este problema.
- ii) Probar que toda solución clásica es una solución débil.
- iii) Probar que para $a_0(x) \geq 0$ en Ω y $f \in L^2$ existe una solución única en $H_0^1(\Omega)$ de la formulación débil.

Ejercicio 11 Consideremos $\Omega \in \mathbb{R}^2$ un dominio con borde poligonal, y T_h una triangulación del mismo. Sea $K \subset T_h$ un triángulo de la partición. Llamamos:

 $h_K = \text{mayor de los lados de } K,$

 $\rho_K = \text{diámetro del círculo inscripto en } K,$

 $h = \max_{K \in T_h} h_K.$

Probar que la condición $\frac{h_K}{\rho_K} \leq \beta \quad \forall K \in T_h$ es equivalente a que exista $\theta_0 > 0$ tal que para cualquier ángulo θ de cualquier triángulo $K \in T_h$ se tiene $\theta \geq \theta_0$.

Ejercicio 12 Considere el siguiente problema en $\Omega \subset \mathbb{R}^2$:

$$\begin{cases} -\triangle u + \beta_1 \frac{\partial u}{\partial x} + \beta_2 \frac{\partial u}{\partial y} = f & \text{en } \Omega \\ u|_{\partial\Omega} = 0 \end{cases}$$

Donde β_1 y β_2 son constantes en \mathbb{R} y $f \in L^2(\Omega)$.

- i) Hallar la forma debil en un espacio adecuado V.
- ii) Probar que existe una solución única en V de la formulación débil. Sug. : Para ver la coercividad verifique que:

$$\int_{\Omega} (\beta_1 \frac{\partial v}{\partial x} + \beta_2 \frac{\partial v}{\partial y}).v = 0, \forall v \in V$$

Ejercicio 13 Se desea aproximar

$$\int_{\hat{T}} f(\hat{x}) d\hat{x}$$

donde \hat{T} es el triángulo de referencia como se muestra en la Figura 1. Mostrar que la fórmula de integración numérica

$$\int_{\hat{T}} f(\hat{x}) d\hat{x} \sim \frac{1}{2} f(\frac{1}{3}, \frac{1}{3})$$

es exacta para polinomios de grado menor o igual a 1.

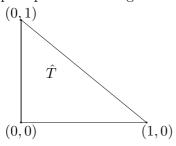


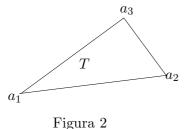
Figura 1

Ejercicio 14 Mostrar que la fórmula de integración numérica

$$\int_{\hat{T}} f(\hat{x})d\hat{x} \sim \frac{1}{6} \left(f(\frac{1}{2}, 0) + f(0, \frac{1}{2}) + f(\frac{1}{2}, \frac{1}{2}) \right)$$

es exacta para polinomios de grado menor o igual que 2.

Ejercicio 15 Sea T un triángulo genérico de vertices a_1, a_2, a_3 como muestra la Figura 2.



Sea $F(\hat{x}) = B\hat{x} + b$ la transformación afín que manda \hat{T} en T. Usando el ejercicio 13 y haciendo un cambio de variables mostrar que la fórmula de cuadratura

$$\int_{T} f(x)dx \sim |T|f(a_{123})$$

donde a_{123} es el baricentro del triángulo T, es exacta para polinomios de grado menor o igual que 1.

Ejercicio 16 Procediendo en forma análoga al ejercicio previo y usando el ejercicio 14, mostrar que la fórmula de cuadratura

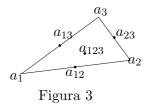
$$\int_{T} f(x)dx \sim \frac{|T|}{3} (f(a_{12}) + f(a_{13}) + f(a_{23}))$$

donde a_{ij} , i < j denota el punto medio del lado de vértices a_i y a_j , es exacta para polinomios de grado menor o igual que 2. (ver Figura 3)

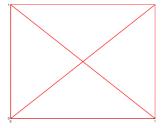
Ejercicio 17 En forma análoga a los ejercicios previos mostrar que la fórmula de cuadratura

$$\int_{T} f(x)dx \sim \frac{|T|}{60} \left(3\sum_{i=1}^{3} f(a_i) + 8\sum_{1 \le i \le j \le 3} f(a_{ij}) + 27f(a_{123})\right)$$

es exacta para polinomios de grado menor o igual que 3. (ver Figura 3)



Ejercicio 18 Considerar la siguiente triangulación del cuadrado $[0,1] \times [0,1]$. Considere una numeración de los nodos en sentido antihorario de afuera hacia adentro ,i.e, $N_1 = (0,0), \dots, N_5 = (0,5,0,5)$. Hallar las matrices locales y la matriz de rigidez que resultan al resolver el problema del ejercicio 9 usando elementos finitos lineales.



Ejercicio 19 Hacer un programa para resolver la ecuación de Poisson $-\Delta u = f$ en el cuadrado $[0,1] \times [0,1]$ usando elementos finitos (triangulando el dominio y utilizando elementos lineales). Calcular el error $||u-u_h||$ en diversas normas y graficar en función de h.