1	2	3	4	Calif.	
					Nombre y Apellido:

12 de Mayo de 2006

Análisis Real - Medida y Probabilidad. Primer Parcial

Primer cuatrimestre de 2006

1. Sea $\alpha \in (0,1)$ y sea $\tau : [0,1) \to [0,1)$ dada por:

$$\tau(x) = \begin{cases} x + \alpha & \text{si } x \in [0, 1 - \alpha) \\ x + \alpha - 1 & \text{si } x \in [1 - \alpha, 1). \end{cases}$$

- a) Probar que si $E \subset [0,1)$ es medible, entonces $\tau^{-1}(E)$ es medible y $|\tau^{-1}(E)| = |E|$.
- b) Probar que si $f:[0,1)\to\mathbb{R}$ es integrable, entonces $\int_0^1 f=\int_0^1 f\circ\tau$.
- 2. Sea (X, Σ, μ) un espacio de medida finita. Sea $(f_n)_{n\geq 1}$ una sucesión de funciones integrables. Probar que son equivalentes:
 - (i) $(f_n)_{n\geq 1}$ es una sucesión fundamental en medida y, además, cumple que para todo $\varepsilon>0$ existe un $\delta>0$ tal que:

$$A \in \Sigma$$
, $\mu(A) < \delta \implies \sup_{n \ge 1} \int_A |f_n| \ d\mu < \varepsilon$.

(ii)
$$\lim_{n,m\to\infty} \int |f_n - f_m| d\mu = 0.$$

3. Probar que no existe ninguna función $\phi:[0,+\infty)\to\mathbb{R}$ integrable y tal que

$$nxe^{-nx^2} \le \phi(x) \qquad \forall x \ge 0 \quad \forall n \ge 1.$$

4. Sean (X, Σ, μ) un espacio de medida. Sean f_n, f funciones medibles y finitas tales que $f_n \xrightarrow{\mu} f$. Probar que para todo $a \in \mathbb{R}$ se satisface:

$$\mu\left(\left\{x \in X : f(x) > a\right\}\right) \le \liminf_{n \to \infty} \mu\left(\left\{x \in X : f_n(x) > a\right\}\right)$$

Justificar todas las respuestas. Enunciar todas las hipótesis de los teoremas usados.