Práctica 2: Funciones medibles

Ejercicio 1. Sea \mathcal{B} la σ -álgebra de Borel de \mathbb{R} y $f:\mathbb{R}^n \to \overline{\mathbb{R}}$. Probar que

- (a) Si f es medible entonces $f^{-1}(B)$ es medible para todo $B \in \mathcal{B}$.
- (b) Si $\overline{\mathcal{B}} = \{E = B \cup A, B \in \mathcal{B} \text{ y } A \subseteq \{-\infty, \infty\}\}$ entonces f es medible si y sólo si $f^{-1}(E)$ es medible para todo $E \in \overline{\mathcal{B}}$.

Ejercicio 2. Sean $f, g : \mathbb{R}^n \to \overline{\mathbb{R}}$ medibles. Mostrar que los conjuntos $\{f > g\}$ y $\{f = g\}$ son medibles.

Ejercicio 3.

- (a) Sea $f : \mathbb{R} \to \mathbb{R}$ tal que para todo $\alpha \in \mathbb{R}$ el conjunto $\{x \in \mathbb{R} : f(x) = \alpha\}$ es medible. ¿Es f medible?
- (b) Sea $f: \mathbb{R} \to \mathbb{R}$ tal que |f| es medible. Es f medible?

Ejercicio 4. Sea $f: \mathbb{R} \to \mathbb{R}$.

- (a) Probar que si f es monótona, entonces f es medible Borel.
- (b) Probar que si f es derivable sobre \mathbb{R} , entonces f' es medible Borel.

Ejercicio 5. Probar que si $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ es medible, entonces existe $g: \mathbb{R}^n \to \overline{\mathbb{R}}$ medible Borel tal que f = g a.e.

Ejercicio 6. Sea $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ continua en casi todo punto. Probar que f es medible.

Ejercicio 7.

- (a) Hallar $f: \mathbb{R} \to \mathbb{R}$ continua a.e. tal que no exista $g: \mathbb{R} \to \mathbb{R}$ continua que verifique f = g a.e.
- (b) Hallar $f, g : \mathbb{R} \to \mathbb{R}$ tales que g sea continua, f = g a.e. y f sea discontinua en todo punto.

Ejercicio 8. Sea I un intervalo de \mathbb{R}^n .

(a) Sea $E\subseteq I$ medible. Probar que para cada $\epsilon>0$ existe $g:I\to\mathbb{R}$ continua tal que

$$|\{x \in I : g(x) \neq \chi_E(x)\}| < \epsilon.$$

(b) Sea φ una función simple definida sobre I. Probar que para cada $\epsilon>0$ existe $g:I\to\mathbb{R}$ continua tal que

$$|\{x \in I : g(x) \neq \varphi(x)\}| < \epsilon.$$

(c) Sea $f:I\to\overline{\mathbb{R}}$ medible y finita en c.t.p. Probar que dados $\epsilon>0$ y $\delta>0$ existe φ simple tal que

$$|\{x \in I : |\varphi(x) - f(x)| \ge \epsilon\}| < \delta.$$

(d) Sea f como en (c). Probar que dados $\epsilon > 0$ y $\delta > 0$ existe g continua tal que

$$|\{x \in I : |g(x) - f(x)| \ge \epsilon\}| < \delta.$$

Ejercicio 9. Sea E medible y $(f_k)_{k\geq 1}: E \to \mathbb{R}$ una sucesión de funciones medibles tal que para todo $x \in E$ existe $M_x \in \mathbb{R}_{>0}$ tal que $|f_k(x)| \leq M_x \ \forall k \in \mathbb{N}$. Probar que si para todo $\alpha > 0$ existe $k_0 = k_0(\alpha) \in \mathbb{N}$ tal que

$$k \ge k_0 \quad \Rightarrow \quad |\{x \in E : |f_k(x)| < \alpha\}| \le \alpha/k,$$

entonces |E| = 0.

Ejercicio 10. Sea E de medida finita y $(f_k)_{k\geq 1}: E \to \mathbb{R}$ una sucesión de funciones medibles tal que para todo $x \in E$ existe $M_x \in \mathbb{R}_{>0}$ tal que $|f_k(x)| \leq M_x \ \forall k \in \mathbb{N}$. Probar que para todo $\epsilon > 0$ existen $F \subseteq E$ cerrado y $M \in \mathbb{R}_{>0}$ tales que

$$|E \setminus F| < \epsilon$$
 y $|f_k(x)| \le M \quad \forall k \in \mathbb{N}, \ \forall x \in F.$

Ejercicio 11. Para cada $n \in \mathbb{N}$, sea $f_n : [0, \infty) \to \mathbb{R}$ definida por $f_n(x) = n\chi_{[1/n, 2/n]}(x)$. Probar que

- (a) $(f_n)_{n\geq 1}$ converge puntualmente.
- (b) Para cada $\delta > 0, (f_n)_{n \geq 1}$ converge uniformemente en $[\delta, \infty)$.
- (c) No existe $E \subset [0, \infty)$ tal que |E| = 0 y $(f_n)_{n \geq 1}$ converge uniformemente en E^c .

Ejercicio 12.

- (a) Sea E de medida finita y sean $(f_n)_{n\geq 1}$, $f: E \to \overline{\mathbb{R}}$ funciones medibles, finitas en casi todo punto de E y tales que $f_n \underset{n\to\infty}{\to} f$ a.e. en E. Probar que existe una sucesión $(E_i)_{i\geq 1}$ de conjuntos medibles de E tal que
 - (i) $|E \setminus \bigcup_{i=1}^{\infty} E_i| = 0$,
 - (ii) Para cada $i \geq 1$, $f_n \underset{n \to \infty}{\Longrightarrow} f$ en E_i .

(b) Probar que el mismo resultado vale si $E = \bigcup_{k=1}^{\infty} A_k$ donde A_k es de medida finita para todo $k \in \mathbb{N}$.

Ejercicio 13. Sean $(f_n)_{n\geq 1}$ y f funciones medibles definidas sobre un conjunto A y finitas en casi todo punto. Sea $(A_n)_{n\geq 1}$ una sucesión de subconjuntos de A medibles, tales que $|A\backslash A_n| \underset{n\to\infty}{\to} 0$. Probar que si $\chi_{A_n} f_n \stackrel{m}{\to} f$ entonces $f_n \stackrel{m}{\to} f$.

Ejercicio 14. Supongamos que $f_k \stackrel{m}{\to} f$ y $g_k \stackrel{m}{\to} g$ sobre E.

- (a) Probar que $f_k + g_k \xrightarrow{m} f + g$ sobre E.
- (b) Probar que si $|E| < +\infty$, entonces $f_k g_k \xrightarrow{m} fg$ sobre E. Mostrar que la hipótesis $|E| < +\infty$, no puede quitarse.
- (c) Sea $(\frac{f_k}{g_k})_{k\geq 1}$ una sucesión de funciones definidas en casi todo punto de E. Probar que si $|E|<+\infty,\ g_k\to g$ sobre E y $g\neq 0$ a.e., entonces $\frac{f_k}{g_k}\stackrel{m}{\to}\frac{f}{g}$.

Ejercicio 15. Sea $f_1:[0,1]\to [0,1]$ la función de Cantor-Lebesgue y $f:[0,1]\to [0,2]$ definida por $f(x)=f_1(x)+x$.

- (a) Probar que f es continua y biyectiva y que f^{-1} es continua.
- (b) Probar que si C es el Ternario de Cantor, |f(C)| = 1.
- (c) Sea $g = f^{-1}$. Mostrar que existe A medible tal que $g^{-1}(A)$ es no medible.
- (d) Mostrar que existe un conjunto medible que no es boreliano.
- (e) Hallar $h_1:[a,b]\to R$ medible Borel y $h_2:\mathbb{R}\to\mathbb{R}$ medible tal que $h_2\circ h_1$ no es medible.

Ejercicio 16. Probar que si $f: \mathbb{R}^n \to \mathbb{R}$ es s.c.s. (resp. s.c.i., resp. continua) entonces f es medible Borel.