Práctica 7

- 1. a) Sea $f:(a,b) \longrightarrow \mathbb{R}$ derivable. Probar que f es creciente en (a,b) si y sólo si $f' \geqslant 0$ en (a,b).
 - **b)** Sea $f:(a,b) \longrightarrow \mathbb{R}$ derivable. Probar que si f'(x) > 0 para todo $x \in (a,b)$, entonces f es estrictamente creciente en (a,b). Mostrar con un ejemplo que no vale la recíproca.
- 2. Sea $f : \mathbb{R} \longrightarrow \mathbb{R}$ derivable y tal que f' es acotada. Probar que f es uniformemente continua en \mathbb{R} .
- 3. Sea $f:(a,b) \longrightarrow \mathbb{R}$ continua en (a,b), derivable en $(a,b) \{x_0\}$ y tal que los límites laterales de f' en x_0 existen y son finitos.
 - i) Probar que f es derivable lateralmente en x_0 . Deducir que si ambos límites laterales coinciden, entonces f es derivable en x_0 y calcular $f'(x_0)$.
 - ii) Mostrar que los resultados de i) pierden validez si se omite hipótesis de continuidad de f en x_0 .
- 4. Sean $f: [\alpha, \beta] \longrightarrow \mathbb{R}$ derivable en (α, β) y $\alpha < a < b < \beta$ tal que $f'(a) \neq f'(b)$.
 - (a) Probar que si f'(a) < 0 < f'(b) entonces existe $c \in (a, b)$ tal que f'(c) = 0.
 - (b) Probar que si λ es un número real comprendido entre f'(a) y f'(b), existe $c \in (a, b)$ tal que $f'(c) = \lambda$.
 - (c) Sea $f: (-1,1) \to \mathbb{R}^2$

$$f(t) = \begin{cases} (t^2 \sin(1/t), t^2 \cos(1/t) & si & 0 < t < 1 \\ (0,0) & si & -1 < t \le 0 \end{cases}$$

Probar que para todo $t \in (-1,1)$ existe $f' = (f'_1, f'_2)$ pero f'((-1,1)) no es conexo.

5. Sea $f:(a,b)\longrightarrow \mathbb{R}$. Se dice que f es **convexa** si para todo $x,y\in (a,b)$ y todo $t\in (0,1)$ es

$$f(t.x + (1-t).y) \le t.f(x) + (1-t).f(y)$$

Si f es derivable, demostrar que f es convexa si y sólo si f' es monótona creciente. Comprobar que si además existe f'' entonces, f es convexa si y sólo si $f''(x) \ge 0$ para todo $x \in (a, b)$. 6. Sea $f:(-1,1) \longrightarrow \mathbb{R}$ derivable en x=0. Dadas dos sucesiones $(\alpha_n),(\beta_n) \subset (-1,1)$ que convergen a 0 y tales que $\alpha_n < \beta_n$ para todo $n \in \mathbb{N}$ se define

$$D_n = \frac{f(\alpha_n) - f(\beta_n)}{\alpha_n - \beta_n}$$

Demostrar que

- a) si $\alpha_n < 0 < \beta_n$ para todo n, entonces $D_n \longrightarrow f'(0)$
- **b)** si $0 < \alpha_n$ para todo n y $\left(\frac{\beta_n}{\beta_n \alpha_n}\right)$ está acotada, entonces $D_n \longrightarrow f'(0)$
- c) si f es de clase C^2 en (-1,1), entonces $D_n \longrightarrow f'(0)$.
- 7. Sean $E\subset \mathbb{R}^n$ un bola abierta y $f:E\longrightarrow \mathbb{R}^m$ una aplicación que satisface

$$||f(x) - f(y)|| \le ||x - y||^2$$

para todo $x, y \in E$. Demostrar que f es constante. Vale este resultado si E es cualquier abierto de \mathbb{R}^n ?

- 8. Sea $U \subset \mathbb{R}^n$ abierto y $f: U \longrightarrow \mathbb{R}$ diferenciable.
 - a) Probar que si f alcanza un extremo en $x_0 \in U$, entonces $Df(x_0) \equiv 0$.
 - **b)** Mostrar que si \bar{U} es compacto y f es continua en \bar{U} y f es constante en ∂U , entonces existe $x_0 \in U$ tal que $Df(x_0) \equiv 0$.
- 9. Sea $U \subset \mathbb{R}^n$ abierto y $f: U \longrightarrow \mathbb{R}^m$, $f = (f_1,, f_m)$.
 - (a) Probar que si existen y son continuas las derivadas parciales de cada $f_i: U \to \mathbb{R}$, entonces f es diferenciable.
 - (b) Si f es diferenciable consideremos la función D que a cada $x \in U$ le asigna la transformación lineal de \mathbb{R}^n en \mathbb{R}^m D(f)(x).

Probar que $D: U \to \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$ (este último con la norma de operadores) es continua si, y sólo si, son continuas las derivadas parciales de cada f_i .

10. Sea $f: \mathbb{R} \longrightarrow \mathbb{R}$ dada por $f(x) = x + \frac{1}{2(1+x^2)}$. Probar que f es un difeomorfismo local alrededor de cualquier $x_0 \in \mathbb{R}$.

Encontrar un intervalo alrededor de $x_0 = 0$ en el cual f sea difeomorfismo.

11. Sea $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida por

$$f(t) = \begin{cases} t + 2t^2 \operatorname{sen}\left(\frac{1}{t}\right) & t \neq 0\\ 0 & t = 0 \end{cases}$$

Mostrar que f'(0) = 1 y f' es acotada en (-1,1), pero que sin embargo f no es biyectiva en ningún entorno de t = 0.

Deducir que la continuidad de f' en el punto es necesaria en el teorema de la función inversa, incluso en el caso n = 1.

- 12. Sea U un abierto de \mathbb{R}^n y sea $f:U\longrightarrow\mathbb{R}^n$ de clase C^1 con jacobiano no nulo en todo $x\in U$.
 - i) Probar que f es abierta.
 - ii) Probar que para cada $y \in \mathbb{R}^n$, $f^{-1}(y)$ es un conjunto discreto.
- 13. Sea $f: \mathbb{R}^3 \longrightarrow \mathbb{R}$ definida por $f(x, y, z) = x^2y + e^x + z$.
 - i) Comprobar que f(0, 1, -1) = 0 y $D_1 f(0, 1, -1) \neq 0$.
 - ii) Deducir la existencia de un entorno $U \subset \mathbb{R}^2$ de (1,-1) y una función $g: U \longrightarrow \mathbb{R}$ diferenciable tal que f(g(y,z),y,z)=0 para todo $(y,z)\in U$.
 - iii) Hallar la ecuación del plano tangente al gráfico de g en el punto (1, -1, g(1, -1)).
- 14. Sea $F: \mathbb{R}^2 \longrightarrow \mathbb{R}$ una función tal que (1,2,0) es solución de la ecuación F(xz,y-2x)=0.
 - i) Hallar condiciones suficientes para que existan un entorno $W \subset \mathbb{R}^2$ del punto (1,0) y una función $\varphi: W \longrightarrow \mathbb{R}$ de clase C^1 tales que $\varphi(1,0)=2$ y $F(x,z,\varphi(x,z)-2x)=0$ para todo $(x,z)\in W$.
 - ii) Probar que $x \frac{\partial \varphi}{\partial x}(x,y) y \frac{\partial \varphi}{\partial y}(x,y) = 2x$ para todo $(x,y) \in W$.
- 15. a) Sea $f : \mathbb{R} \longrightarrow \mathbb{R}$ derivable y tal que $f'(x) \neq 1$ para todo $x \in \mathbb{R}$. Probar que f tiene a lo sumo un punto fijo.
 - **b)** Mostrar que si bien la función $f(x) = x + (1 + e^x)^{-1}$ satisface 0 < f'(x) < 1 para todo $x \in \mathbb{R}$, no tiene ningún punto fijo.
 - c) Explicar por qué esto no contradice el teorema del punto fijo.
- 16. Verificar que la función $f(x) = \frac{x^3 + 1}{3}$ tiene tres puntos fijos α, β y γ que satisfacen

$$-2 < \alpha < -1 \qquad , \qquad -1 < \beta < 1 \qquad , \qquad 1 < \gamma < 2$$

Si se escoge arbitrariamente $x_1 \in \mathbb{R}$ y se define la sucesión $x_{n+1} = f(x_n)$, probar que

- a) si $x_1 < \alpha$, entonces $x_n \longrightarrow -\infty$
- **b)** si $\alpha < x_1 < \gamma$, entonces $x_n \longrightarrow \beta$

c) si $\gamma < x_1$, entonces $x_n \longrightarrow +\infty$

Concluir que por este método sólo puede localizarse β .

17. Dado $\alpha>0,$ se elige $x_1>\sqrt{\alpha}$ y se define recursivamente la sucesión (x_n) por

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{\alpha}{x_n} \right)$$

- a) Demostrar que (x_n) es decreciente y que converge a $\sqrt{\alpha}$.
- **b)** Sea $\varepsilon_n = x_n \sqrt{\alpha}$. Mostrar que

$$\varepsilon_{n+1} = \frac{\varepsilon_n^2}{2x_n} < \frac{\varepsilon_n^2}{2\sqrt{\alpha}}$$

c) Deducir que

$$\varepsilon_{n+1} < \beta \left(\frac{\varepsilon_1}{\beta}\right)^{2^n}$$

para todo $n \in \mathbb{N}$ y donde $\beta = 2\sqrt{\alpha}$.

d) Si $\alpha=3$ y $x_1=2$, mostrar que $\frac{\varepsilon_1}{\beta}<\frac{1}{10}$ y que por lo tanto

$$\varepsilon_5 < 4.10^{-16}$$
 y $\varepsilon_6 < 4.10^{-32}$

Esto muestra que este algoritmo tiene una forma sencilla de recurrencia y converge muy rápidamente.

18. Sea f una función dos veces derivable en el intervalo real [a, b] tal que

$$\triangleright f(a) < 0 < f(b)$$

$$\, \triangleright \, f' \geqslant \delta > 0$$
y 0 $\leqslant f'' \leqslant M$ para todo $x \in [a,b]$

Sea ξ el único punto de (a, b) en el cual $f(\xi) = 0$.

Completar el siguiente esbozo del método de Newton para calcular ξ .

(1) Escoger $x_1 \in (\xi, b)$ y definir la sucesión (x_n) por medio de

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Interpretar esto geométricamente en términos de la tangente al gráfico de f.

- (2) Demostrar que $x_{n+1} < x_n$ y que $x_n \longrightarrow \xi$
- (3) Usar el Teorema de Taylor para mostrar que

$$x_{n+1} - \xi = \frac{f''(t_n)}{2f'(x_n)}(x_n - \xi)^2$$

para algún $t_n \in (\xi, x_n)$.

(4) Deducir que

$$0 \leqslant x_{n+1} - \xi \leqslant \frac{2\delta}{M} \left[\frac{2\delta}{M} (x_1 - \xi) \right]^{2^n}$$

Comparar con el ejercicio anterior.

(5) Mostrar que el método de Newton es significativo para encontrar un punto fijo de la función

$$g(x) = x - \frac{f(x)}{f'(x)}$$

¿Cómo se comporta g'(x) cuando x está muy cerca de ξ ?

- (6) Aplicar el método de Newton a la función $f(x) = x^{1/3}$ sobre \mathbb{R} . ¿Qué ocurre?
- 19. Comprobar que las funciones $f \equiv 0$ y $g(x) = \frac{x^2}{4}$ son solución del problema con valores iniciales

$$y' = y^{1/2} , y(0) = 0$$

¿Hay otras soluciones? Determinarlas.

Explicar por qué esto no contradice el teorema de existencia y unicidad de solución.

20. Formular y demostrar un teorema de unicidad análogo para sistemas de ecuaciones diferenciales de la forma

$$\begin{cases} y'_j = \phi_j(x, y_1, \dots, y_m) \\ \\ y_j(a) = c_j \end{cases}$$
 $j = 1, \dots, m$

que también puede escribirse en la forma

$$\begin{cases} Y' = \Phi(x, Y) \\ Y(a) = C \end{cases}$$

donde $Y:[a,b] \longrightarrow \mathbb{R}^m$, $\Phi:[a,b] \times R \subset \mathbb{R}^{m+1} \longrightarrow \mathbb{R}^m$ y $C \in \mathbb{R}^m$.

Generalizar al caso en que $x \in \mathbb{R}^n$.

21. Particularizar el ejercicio anterior considerando el sistema

$$\begin{cases} y'_{j} = y_{j+1} \\ y'_{k} = f(x) - \sum_{j=1}^{m} g_{j}(x)y_{j} \end{cases}$$
 $j = 1, \dots, m-1$

donde f, g_1, \ldots, g_m son funciones reales continuas en [a, b] y deducir un teorema de existencia y unicidad de soluciones de la ecuación

$$y^{(m)} + g_m(x)y^{m-1} + \dots + g_2(x)y' + g_1(x)y = f(x)$$

con las condiciones iniciales

$$y(a) = c_1$$
 , $y'(a) = c_2$, ... , $y^{m-1}(a) = c_m$

22. Dados $A \in \mathbb{R}^{n \times n}$ y $X_0 \in \mathbb{R}^n$, verificar que $F(t) = e^{At}.X_0$ es la única solución de X' = A.X que toma el valor X_0 en t = 0.