Cálculo Avanzado - Práctica 8

Primer cuatrimestre de 2003

Temas: Teorema de Punto Fijo

1. Sea (X,d) un espacio métrico completo y sea $f:X\to X$. Probar que la condición

$$d(f(x), f(y)) < d(x, y)$$
 $\forall x, y \in X$

no es suficiente para garantizar la existencia de un punto fijo de f, pero que sí lo es si X es compacto.

- 2. Sea $f: \mathbb{R} \to \mathbb{R}$ una función derivable tal que $|f'(x)| \le \alpha < 1$. Probar que f tiene un único punto fijo.
- 3. Considere la siguiente ecuación integral no lineal:

$$f(x) = \lambda \int_{a}^{b} K(x, y; f(y)) dy + \varphi(x)$$

con K y φ continuas, tal que K satisface la condición de Lipschitz en la tercer variable :

$$|K(x, y; z_1) - K(x, y; z_2)| \le M|z_1 - z_2|$$

Probar que la ecuación integral tiene solución única para todo

$$|\lambda| < \frac{1}{M(b-a)}.$$

Muestre una sucesión que converja a la solución.

- 4. Sea $f:[0,T]\times\Omega\subset\mathbb{R}^n\to\mathbb{R}^n$ una función continua y lipchitz en la segunda variable.
 - (a) $y \in (C[0,T],\Omega)$ es solución de la ecuación diferencial y'(t) = f(t,y(t)) con la condición inicial y(0) = 0 si y sólo si

$$y(t) = y_0 + \int_0^t f(t, y(s)) ds \ \forall t \in [0, T]$$

- (b) Probar que si T es suficientemente pequeño , existe una única solución de este problema.
- 5. Sea X un espacio métrico completo y sea $T: X \to X$ tal que existe $n \in \mathbb{N}$ tal que T^n es una contracción. Entonces existe un único $x \in X$ tal que T(x) = x.
- 6. (a) Probar que existe una única función continua $f: \mathbb{R} \to \mathbb{R}$ que es solución de la siguiente ecuaci'on integral

$$f(x) = \lambda \int_{a}^{x} K(x, y) f(y) dy + \phi(x)$$

donde $K: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ y $\phi: \mathbb{R} \to \mathbb{R}$ son continuas.

(b) Sea $A: \mathbb{R} \to \mathbb{R}^{n \times n}$ continua. Probar que las soluciones de

$$x'(t) = A(t)x(t)$$

están definidas para todo tiempo t.