Práctica 5

SEGUNDO CUATRIMESTRE 2004

- 1. Hacer una lista de los espacios métricos vistos hasta ahora. ¿Cuáles son normados? ¿Cuáles son de Banach?
- 2. Sean $(E, \|\cdot\|_E)$ y $(F, \|\cdot\|_F)$ espacios normados y considere el espacio vectorial producto $E \times F$ con la estructura vectorial natural y las normas

$$||(x,y)||_1 = ||x||_E + ||y||_F$$

у

$$||(x,y)||_{\infty} = \max\{||x||_E, ||y||_F\}.$$

Probar que estas normas son equivalentes. ¿Se le ocurre alguna otra norma equivalente a las anteriores?

- 3. Sea $(E, \|\cdot\|)$ un espacio normado. Probar que se verifican:
 - a) $\overline{B_r(x)} = \overline{B}_r(x)$ (la clausura de la bola abierta es la bola cerrada).
 - **b)** $diam(B_r(x)) = 2r$.
- 4. Sea $(E, \|\cdot\|)$ un espacio normado y sea $C \subset E$. Decimos que C es *convexo* si $\forall x, y \in C$ y $\forall t \in [0, 1]$ se tiene que $tx + (1 t)y \in C$.
 - a) Probar que $B_r(x)$ es convexo.
 - b) Probar que si $(C_i)_{i\in I}$ son convexos, entonces $\cap_{i\in I} C_i$ lo es.
 - c) Probar que si C es convexo, entonces C° lo es.
 - d) Probar que si C es convexo, entonces \overline{C} lo es.
- 5. Sea $(E, \|\cdot\|)$ un espacio normado y $S \subset E$ un subespacio (vectorial). Probar que:
 - a) \overline{S} también es un subespacio.
 - **b)** Si $S \neq E$, entonces $S^o = \emptyset$.
 - c) Si S es un hiperplano (i.e., $\exists x \neq 0$ tal que $S \oplus \langle x \rangle = E$), entonces S es o bien denso o bien cerrado en E.
- 6. Sea $(E, \|\cdot\|)$ un espacio de Banach y $(x_n) \subset E$. Si $\sum_{n=1}^{\infty} \|x_n\|$ convege, entonces $\sum_{n=1}^{\infty} x_n$ converge.
- 7. Para cada uno de los siguientes ejemplos de subespacios decidir si son cerrados y si son hiperplanos.
 - a) $c = \{(x_n)_{n \in \mathbb{N}} : \exists \lim_{n \to \infty} x_n\} \subset l^{\infty}$.
 - **b)** $c_0 = \{(x_n)_{n \in \mathbb{N}} : x_n \to 0\} \subset c$
 - c) $\{x \in l^1 : \sum_{n=1}^{\infty} x_n = 0\} \subset l^1$

8. Sean $(E, \|\cdot\|_E), (F, \|\cdot\|_F)$ espacios normados. Consideramos

$$L(E, F) = \{T : E \to F/T \text{ es lineal y continua}\},\$$

y para cada $T \in L(E, F)$ sea

$$||T|| = \sup_{\|x\|_E \le 1} ||T(x)||_F$$

Probar que:

- a) $(L(E,F), \|\cdot\|)$ es un espacio normado.
- b) Si F es de Banach entonces L(E, F) también lo es.
- 9. Sean E y F espacios normados y sea $T: E \to F$ un operador lineal y continuo. Verificar las siguientes fórmulas:

$$||T|| = \sup_{\|x\| \le 1} ||Tx|| = \sup_{\|x\| = 1} ||Tx|| =$$

$$= \sup_{x \neq 0} \frac{\|Tx\|}{\|x\|} = \inf\{M/\|Tx\| \le M\|x\| \ \forall \ x \in E\}$$

10. Se
a $k:[0,1]\times[0,1]\to\mathbb{R}$ continua y sea $K:C[0,1]\to C[0,1]$ dada por

$$Kf(x) = \int_0^1 k(x, y) f(y) dy$$

Probar que $Kf \in C[0,1]$ y que K es lineal y continua. Acotar su norma.

11. Sea $\mathbb{R}^{(\mathbb{N})} = \{(a_n)_{n\geq 1}/ \exists n_0, \ a_n = 0 \ \forall n \geq n_0\}$ con la norma infinito. Probar que la función $f: \mathbb{R}^{(\mathbb{N})} \to \mathbb{R}$ definida por

$$f((a_n)_{n\geq 1}) = \sum_{n=1}^{\infty} na_n$$

es lineal pero no continua.

12. a) Sea $\phi \in C[0,1]$ y sea $T_{\phi}: C[0,1] \to \mathbb{R}$ dada por

$$T_{\phi}f = \int_0^1 f(x)\phi(x)dx$$

Probar que T_{ϕ} es un funcional lineal continuo y que $||T_{\phi}|| = \int_0^1 |\phi(x)| dx$

- **b)** Sea $T: c \to \mathbb{R}$ dada por $T(a) = \lim_{n \to \infty} a_n$. Probar que T es lineal, continuo y hallar ||T||.
- c) Sea $1 \le p \le \infty$, $p' = \frac{p}{p-1}$ el conjugado de p y sea $b \in l^{p'}$. Definimos $T_b: l^p \to \mathbb{R}$ como sigue

$$T_b(a) = \sum_{n=1}^{\infty} b_n a_n$$

Probar que T_b es lineal, continuo y hallar $||T_b||$ (Ayuda: utilice la desigualdad de Hölder).

- 13. Sea $(E, |||_E)$ un espacio normado de dimensión finita.
 - a) Dada una base $B = \{v_1,, v_m\}$ de E consideremos la transformación lineal $T: E \to \mathbb{R}^m$ dada por

$$T\left(\sum_{i=1}^{m} \lambda_i v_i\right) = (\lambda_1,, \lambda_m)$$

I) Probar que $\| \|_T : \mathbb{R}^m \to \mathbb{R}$ definida por

$$||x||_T = ||T^{-1}(x)||_E$$

es una norma en \mathbb{R}^m .

- II) Deducir que T es un homeomorfismo.
- **b)** Probar que toda forma lineal $\phi: E \to \mathbb{R}$ es continua.
- c) Probar que $(E, |||_E)$ es un espacio de Banach.
- 14. Sea $(E, |||_E)$ un espacio normado y $S \subset E$ un subespacio vectorial de dimensión finita. Probar que S es cerrado.
- 15. Mostrar que en l^2 las normas $|||_2$ y $|||_{\infty}$ no son equivalentes.
- 16. Sea $C^1[0,1]$ el epacio vectorial de las funciones $f:[0,1] \to \mathbb{R}$ de clase C^1 en [0,1] (esto es continuas en [0,1] y con derivada f' continua en [0,1]).
 - a) Consideremos la aplicación lineal $D: (C^1[0,1], \|\cdot\|_{\infty}) \to (C[0,1], \|\cdot\|_{\infty})$ dada por D(f) = f'. Mostrar que no es continua.
 - b) En cambio si en $C^1[0,1]$ consideramos la norma:

$$||f||_{C^1} = ||f||_{\infty} + ||f'||_{\infty}$$

 $D:(C^1[0,1],\|\cdot\|_{C^1})\to (C[0,1],\|\cdot\|_{\infty})$ sí resulta continua.

c) Probar que $C^1[0,1]$ no es completo con la norma $\|\cdot\|_{\infty}$ pero sí lo es con $\|\cdot\|_{C^1}$.