PRÁCTICA 7: ESPACIOS NORMADOS. SUCESIONES Y SERIES DE FUNCIONES.

Ejercicio 1. Sea $(E, \|\cdot\|)$ un espacio normado. Probar que se verifican:

- 1. Las operaciones $+: E \times E \to E$ y $\cdot: \mathbb{R}(\ o \ \mathbb{C}) \times E \to E$ son continuas.
- 2. $\overline{B_r(x)} = \overline{B_r(x)}$ (la clausura de la bola abierta es la bola cerrada).
- 3. $diam(B_r(x)) = 2r$.

Ejercicio 2. Sea $(E, \| \|)$ un espacio normado. Sean $(x_n)_{n \in \mathbb{N}}, (y_n)_{n \in \mathbb{N}} \subset E$ y $(\lambda_n)_{n \in \mathbb{N}} \subset \mathbb{R}$. Probar que:

- i) Si $x_n \longrightarrow x$ y $\lambda_n \longrightarrow \lambda$, entonces $\lambda_n x_n \longrightarrow \lambda x$
- ii) Si $x_n \longrightarrow x$ e $y_n \longrightarrow y$, entonces $x_n + y_n \longrightarrow x + y$
- iii) Si $x_n \longrightarrow x$, entonces $||x_n|| \longrightarrow ||x||$
- iv) Si $x_n \longrightarrow x$ y $||x_n y_n|| \longrightarrow 0$, entonces $y_n \longrightarrow x$.

Ejercicio 3. Sea $(E, \| \|)$ un espacio normado. Sean $\lambda \in \mathbb{R}$ y $(x_n)_{n \in \mathbb{N}}, (y_n)_{n \in \mathbb{N}} \subset E$ tales que $\sum_{n=1}^{\infty} x_n$ y $\sum_{n=1}^{\infty} y_n$ convergen. Probar que:

- i) $\sum_{n=1}^{\infty} x_n + y_n$ converge y $\sum_{n=1}^{\infty} x_n + y_n = \sum_{n=1}^{\infty} x_n + \sum_{n=1}^{\infty} y_n$.
- ii) $\sum_{n=1}^{\infty} \lambda x_n$ converge y $\sum_{n=1}^{\infty} \lambda x_n = \lambda \cdot \sum_{n=1}^{\infty} x_n$.

Ejercicio 4. Sea $(a_n)_{n\in\mathbb{N}}\subset\mathbb{R}$. Probar que si la serie $\sum_{n=0}^{\infty}a_n$ converge absolutamente, también convergen las series $\sum_{n=0}^{\infty}a_n^2$, $\sum_{n=0}^{\infty}\frac{a_n}{1+a_n}$ y $\sum_{n=0}^{\infty}\frac{a_n^2}{1+a_n^2}$.

Ejercicio 5. Sean $(a_n)_{n\in\mathbb{N}}, (b_n)_{n\in\mathbb{N}}\subset\mathbb{C}$. Para cada $n\in\mathbb{N}$ sea $A_n=\sum_{k=1}^n a_k$. Probar que:

- i) $\sum_{k=1}^{n} a_k b_k = A_n b_{n+1} \sum_{k=1}^{n} A_k (b_{k+1} b_k)$
- ii) Si $\sum_{n=1}^{\infty} a_n$ converge y $\sum_{n=1}^{\infty} (b_{n+1} b_n)$ converge absolutamente, entonces $\sum_{n=1}^{\infty} a_n b_n$ converge.
- iii) Si $(A_n)_{n\in\mathbb{N}}$ es acotada, $\sum_{n=1}^{\infty}(b_{n+1}-b_n)$ converge absolutamente y $b_n\to 0$, entonces $\sum_{n=1}^{\infty}a_nb_n$ converge.

Ejercicio 6.

- 1. Probar que $(\ell_{\infty}, || \cdot ||_{\infty})$ es un espacio normado.
- 2. Sean $(a^{(m)})_{m \in \mathbb{N}}$ y $(b^{(m)})_{m \in \mathbb{N}}$ las sucesiones en $(\ell_{\infty}, \| \|_{\infty})$ dadas por $a_k^{(m)} = \begin{cases} \frac{1}{2^{m-k}} & \text{si } k < m \\ 1 & \text{si } k \ge m \end{cases}$ y $b_k^{(m)} = \begin{cases} \frac{1}{2^{m-k}} & \text{si } k < m \\ 0 & \text{si } k \ge m \end{cases}$.
 - (a) Decidir si existen $\lim_{m \to +\infty} a^{(m)}$ y $\lim_{m \to +\infty} b^{(m)}$.
 - (b) Decidir si las series $\sum_{m=1}^{\infty} a^{(m)}$ y $\sum_{m=1}^{\infty} b^{(m)}$ convergen.

Ejercicio 7. Sea $(B, \| \|)$ un espacio de Banach y sea $(a_n)_{n \in \mathbb{N}} \subset B$ tal que $\sum_{n=1}^{\infty} a_n$ converge absolutamente. Probar que si $\sigma : \mathbb{N} \to \mathbb{N}$ es cualquier función biyectiva, entonces $\sum_{n=1}^{\infty} a_{\sigma(n)}$ también converge y al mismo límite.

Ejercicio 8.

- i) En cada uno de los casos siguientes, hallar el límite puntual de la sucesión $(f_n)_{n\in\mathbb{N}}$ definida en el conjunto $A\subset\mathbb{R}$ dado:
 - (a) $f_n(x) = x^n$ A = (-1, 1]
 - (b) $f_n(x) = \frac{e^x}{x^n}$ $A = (1, +\infty)$
 - (c) $f_n(x) = n^2 x (1 x^2)^n$ A = [0, 1]
- ii) Para la sucesión dada en (a), demostrar que la convergencia es uniforme sobre $B=(0,\frac{1}{2})$. Idem para la sucesión dada en (b) sobre B=[2,5]. ¿Es uniforme la convergencia de la sucesión dada en (c) sobre A?

Ejercicio 9. Sea (X,d) un espacio métrico y sea A un conjunto. Sea $(f_n)_{n\in\mathbb{N}}\subset X^A$ una sucesión de funciones y sea $f:A\to X$. Probar que: $(f_n)_{n\in\mathbb{N}}$ no converge uniformemente a f en A si y sólo si existen $\alpha>0$, una subsucesión $(f_{n_k})_{k\in\mathbb{N}}$ de $(f_n)_{n\in\mathbb{N}}$ y una sucesión $(a_k)_{k\in\mathbb{N}}\subset A$ tales que $d(f_{n_k}(a_k),f(a_k))\geq \alpha$ para todo $k\in\mathbb{N}$.

Ejercicio 10. Analizar la convergencia puntual y uniforme de las siguientes sucesiones de funciones $(f_n)_{n\in\mathbb{N}}$:

i)
$$f_n(x) = \frac{\sin nx}{n}$$
 en \mathbb{R}

ii)
$$f_n(x) = \operatorname{sen}\left(\frac{x}{n}\right)$$
 en \mathbb{R}

iii)
$$f_n(x,y) = \frac{n}{n+1}(x,y)$$
 en \mathbb{R}^2

iv)
$$f_n(x) = (1 + \frac{1}{n})x$$
 en $[0, 1]$

v)
$$f_n(x) = \begin{cases} \frac{1}{n} & \text{si } x \notin \mathbb{Q} \text{ ó } x = 0\\ b + \frac{1}{n} & \text{si } x = \frac{a}{b}, b > 0 \text{ y } (a:b) = 1 \end{cases}$$
 en $[0, 1]$

vi)
$$f_n(z) = z^n$$
 en $\{z \in \mathbb{C} : |z| < 1\}$

Ejercicio 11. Probar que la sucesión de funciones $f_n(x) = \frac{x}{1+x^2} - \frac{x(x^2+1)}{1+(n+1)^2x^2}$ $(n \in \mathbb{N})$ converge puntualmente pero no uniformemente, en \mathbb{R} , a una función continua.

Ejercicio 12. Estudiar la convergencia puntual y uniforme de las sucesiones $f_n(x) = \frac{nx^2}{1+nx^2}$ y f'_n en [-1,1].

Ejercicio 13. Sea X un conjunto y sea $B(X) = \{g : X \longrightarrow \mathbb{C} : g \text{ es acotada } \}$. Sea $(f_n)_{n \in \mathbb{N}} \subset B(X)$.

- i) Si $(f_n)_{n\in\mathbb{N}}$ converge puntualmente a una función f en X, ¿es cierto que $f\in B(X)$?
- ii) Probar que:
 - (a) Si $(f_n)_{n\in\mathbb{N}}$ converge uniformemente a una función f en X, entonces $f\in B(X)$.
 - (b) $(f_n)_{n\in\mathbb{N}}$ converge uniformemente a f si y sólo si $(f_n)_{n\in\mathbb{N}}$ converge a f en $(B(X), d_{\infty})$
 - (c) Si $(f_n)_{n\in\mathbb{N}}$ converge uniformemente en X, entonces existe M>0 tal que $|f_n(x)|\leq M$ $\forall x\in X\ y\ \forall n\in\mathbb{N}$, es decir, $(f_n)_{n\in\mathbb{N}}$ es uniformemente acotada.

Ejercicio 14. Sea $(f_n)_{n\in\mathbb{N}}\subset\mathbb{R}^{\mathbb{R}}$ una sucesión de funciones uniformemente continuas que converge uniformemente a una función f sobre \mathbb{R} . Analizar la continuidad uniforme de f.

Ejercicio 15. Sea (X,d) un espacio métrico y sean $(f_n)_{n\in\mathbb{N}}, (g_n)_{n\in\mathbb{N}}\subset\mathbb{R}^X$ dos sucesiones de funciones continuas uniformemente convergentes sobre X a f y g respectivamente. Probar que:

- i) $(f_n + g_n)_{n \in \mathbb{N}}$ converge uniformemente a f + g sobre X.
- ii) Si ambas sucesiones están uniformemente acotadas, entonces $(f_n.g_n)_{n\in\mathbb{N}}$ es uniformemente convergente a f.g.

Ejercicio 16. Sea (X,d) un espacio métrico compacto y sea A un conjunto. Sean $(f_n)_{n\in\mathbb{N}}\subset\mathbb{R}^X$ y $(g_n)_{n\in\mathbb{N}}\subset X^A$ sucesiones de funciones que convergen uniformemente a funciones $f:X\longrightarrow\mathbb{R}$ y $g:A\longrightarrow X$ respectivamente. Probar que $(f_n\circ g_n)_{n\in\mathbb{N}}\subset\mathbb{R}^A$ converge uniformemente a $f\circ g$.

Ejercicio 17. Sea (X,d) un espacio métrico compacto. Sea $(f_n)_{n\in\mathbb{N}}$ una sucesión de funciones continuas de X en \mathbb{R} y sea $f:X\to\mathbb{R}$ continua. Probar que $(f_n)_{n\in\mathbb{N}}$ converge uniformemente a f si y sólo si para toda sucesión $(x_n)_{n\in\mathbb{N}}$ que converge a $x\in X$, la sucesión $(f_n(x_n))_{n\in\mathbb{N}}$ converge a f(x).

Ejercicio 18. Sea $(f_n)_{n\in\mathbb{N}}$ una sucesión de funciones continuas definidas sobre un espacio métrico (X,d) a valores en \mathbb{R} tal que $\sum_{n=1}^{\infty} f_n$ converge uniformemente sobre X. Probar que:

i)
$$f = \sum_{n=1}^{\infty} f_n$$
 es continua en X .

ii) Si $X=[a,b]\subset\mathbb{R}$, entonces $\int_a^b f(x)\,dx=\sum_{n=1}^\infty\int_a^b f_n(x)\,dx$

Ejercicio 19. Sea $(a_n)_{n\in\mathbb{N}}$ una sucesión tal que $\sum_{n=1}^{\infty} a_n$ converge absolutamente. Probar que $\sum_{n=1}^{\infty} a_n \cos(nx)$ y $\sum_{n=1}^{\infty} a_n \sin(nx)$ convergen uniformemente en \mathbb{R} .

Ejercicio 20. Hallar (y justificar) los conjuntos en \mathbb{R} de convergencia puntual, uniforme y no convergencia de las siguientes series

$$(a) \sum_{n=1}^{\infty} \frac{(-1)^n}{n} x^n \qquad (b) \sum_{n=0}^{\infty} a^n x^n \qquad (c) \sum_{n=1}^{\infty} \frac{x^n}{n} \qquad (d) \sum_{n=0}^{\infty} \frac{x^n}{n!} \qquad (e) \sum_{n=0}^{\infty} n! \ x^n$$

Ejercicio 21.

- i) Mostrar que la serie $\sec x = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} x^{2k+1}$ converge uniformemente sobre todo intervalo finito.
- ii) Probar que la función $f(x) = \sum_{n=0}^{\infty} \left(\frac{x^n}{n!}\right)^2$ es continua en \mathbb{R} .

Ejercicio 22. Sea $f(x) = \sum_{n=1}^{\infty} \frac{1}{1 + (nx)^2}$.

- i) Hallar el dominio de f en \mathbb{R} .
- ii) ¿Sobre qué intervalos converge uniformemente?
- iii) ¿Sobre qué intervalos no converge uniformemente?
- iv) ¿Es f continua en su dominio?
- v) ξ Es f acotada?