PRÁCTICA 9: DIFERENCIACIÓN

Ejercicio 1. Sea $f:(a,b) \longrightarrow \mathbb{R}$ continua en (a,b), derivable en $(a,b) - \{x_0\}$ y tal que los límites laterales de f' en x_0 existen y son finitos.

- i) Probar que f es derivable lateralmente en x_0 . Deducir que si ambos límites laterales coinciden, entonces f es derivable en x_0 y calcular $f'(x_0)$.
- ii) Mostrar que los resultados de i) pierden validez si se omite hipótesis de continuidad de f en x_0 .

Ejercicio 2. Sean $f: [\alpha, \beta] \to \mathbb{R}$ derivable en (α, β) y $\alpha < a < b < \beta$ tal que $f'(a) \neq f'(b)$.

- a) Probar que si f'(a) < 0 < f'(b) entonces existe $c \in (a, b)$ tal que f'(c) = 0.
- b) Probar que si λ es un número real, $f'(a) < \lambda < f'(b)$, existe un $d \in (a,b)$ tal que $f'(d) = \lambda$.
- c) Sea $g:(-1,1) \to \mathbb{R}^2, \ g(t) = \left\{ \begin{array}{ccc} (t^2\mathrm{sen}\,(\frac{1}{t}),t^2\mathrm{cos}\,(\frac{1}{t}) & \mathrm{si} & 0 < t < 1 \\ (0,0) & \mathrm{si} & -1 < t \leq 0 \end{array} \right.$ Probar que para todo $t \in (-1,1)$ existe g'(t) pero que g'((-1,1)) no es conexo.

Ejercicio 3. Sea $f:(a,b) \longrightarrow \mathbb{R}$ derivable en $x_0 \in (a,b)$. Sean $(\alpha_n)_{n \in \mathbb{N}}, (\beta_n)_{n \in \mathbb{N}} \subset (a,b)$ sucesiones que convergen a x_0 y tales que $\alpha_n < \beta_n$ para todo $n \in \mathbb{N}$. Para cada $n \in \mathbb{N}$ se define

$$D_n = \frac{f(\beta_n) - f(\alpha_n)}{\beta_n - \alpha_n}.$$

En cada uno de los siguientes casos, probar que $D_n \longrightarrow f'(x_0)$:

- i) $\alpha_n < x_0 < \beta_n$ para todo $n \in \mathbb{N}$.
- ii) $\left(\frac{\beta_n x_0}{\beta_n \alpha_n}\right)_{n \in \mathbb{N}}$ y $\left(\frac{\alpha_n x_0}{\beta_n \alpha_n}\right)_{n \in \mathbb{N}}$ están acotadas.
- iii) f es de clase C^1 en (a, b).

Dar un ejemplo de una función f derivable en (-1,1) con f' discontinua en 0 para la cual exista el límite de $(D_n)_{n\in\mathbb{N}}$ pero no sea f'(0).

Ejercicio 4. Sea $U \subset \mathbb{R}^n$ un abierto conexo y sea $f: U \longrightarrow \mathbb{R}^m$ una aplicación que satisface $||f(x) - f(y)|| \le ||x - y||^2$ para todo par de puntos $x, y \in U$. Probar que f es constante.

Ejercicio 5. Sea $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ definida por $f(x,y) = \begin{cases} \frac{xy}{x^2+y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$. Probar que existen las derivadas parciales de f en todo $(x,y) \in \mathbb{R}^2$, pero que f no es continua en (0,0).

Ejercicio 6.

- i) Sea $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ definida por $f(x,y) = \begin{cases} \frac{xy^2}{x^2+y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$. Probar que para cada $(x,y) \in \mathbb{R}^2$ y para cada $v \in \mathbb{R}^2$, existe la derivada direccional $\frac{\partial f}{\partial v}(x,y)$, pero que la aplicación $v \mapsto \frac{\partial f}{\partial v}(0,0)$ no es lineal (y por lo tanto f no es diferenciable en el punto (0,0)).
- ii) Sea $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ definida por $f(x,y) = \begin{cases} \frac{x^3y}{x^4+y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$. Probar que para cada $(x,y) \in \mathbb{R}^2$ y para cada $(x,y) \in \mathbb{R}^2$, existe la derivada direccional $\frac{\partial f}{\partial v}(x,y)$ y que la aplicación $(x,y) \mapsto \frac{\partial f}{\partial v}(0,0)$ es lineal, pero que f no es diferenciable en el punto (0,0).

Ejercicio 7.

- i) Sea $f: \mathbb{R} \longrightarrow \mathbb{R}$ derivable y tal que $f'(x) \neq 1$ para todo $x \in \mathbb{R}$. Probar que f tiene a lo sumo un punto fijo.
- ii) Mostrar que si bien la función $f(x) = x + (1 + e^x)^{-1}$ satisface 0 < f'(x) < 1 para todo $x \in \mathbb{R}$, no tiene ningún punto fijo.
- iii) Explicar por qué esto no contradice el teorema del punto fijo.

Ejercicio 8. Sea $f: \mathbb{R} \longrightarrow \mathbb{R}$ la función $f(x) = \frac{x^3+1}{3}$.

i) Verificar que ftiene tres puntos fijos α,β y γ que satisfacen

$$-2 < \alpha < -1$$
 , $0 < \beta < 1$, $1 < \gamma < 2$

- ii) Si se escoge arbitrariamente $x_1 \in \mathbb{R}$ y se define la sucesión $x_{n+1} = f(x_n)$, probar que:
 - (a) Si $x_1 < \alpha$, entonces $x_n \longrightarrow -\infty$
 - (b) Si $\alpha < x_1 < \gamma$, entonces $x_n \longrightarrow \beta$
 - (c) Si $\gamma < x_1$, entonces $x_n \longrightarrow +\infty$
- iii) Concluir que por este método sólo puede localizarse β .

Ejercicio 9. Dado $\alpha > 0$, se elige $x_1 > \sqrt{\alpha}$ y se define recursivamente la sucesión $(x_n)_{n \in \mathbb{N}}$ por

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{\alpha}{x_n} \right)$$

2

- i) Demostrar que $(x_n)_{n\in\mathbb{N}}$ es decreciente y que converge a $\sqrt{\alpha}$.
- ii) Sea $\varepsilon_n = x_n \sqrt{\alpha}$. Mostrar que $\varepsilon_{n+1} = \frac{\varepsilon_n^2}{2x_n} < \frac{\varepsilon_n^2}{2\sqrt{\alpha}}$ para todo $n \in \mathbb{N}$.
- iii) Deducir que $\varepsilon_{n+1} < \beta \left(\frac{\varepsilon_1}{\beta}\right)^{2^n}$ para todo $n \in \mathbb{N}$, donde $\beta = 2\sqrt{\alpha}$.

Ejercicio 10. Sea $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida por

$$f(t) = \begin{cases} t + 2t^2 \operatorname{sen}\left(\frac{1}{t}\right) & \text{si } t \neq 0\\ 0 & \text{si } t = 0 \end{cases}$$

Mostrar que f'(0) = 1 y f' es acotada en (-1,1), pero que sin embargo f no es biyectiva en ningún entorno de t = 0.

Deducir que la continuidad de f' en el punto es necesaria en el teorema de la función inversa, incluso en el caso n=1.

Ejercicio 11. Sea $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ definida por $f(x,y) = (e^x \cos y, e^x \sin y)$.

- i) Verificar que f no es inyectiva.
- ii) Comprobar que el jacobiano de f es no nulo en todo punto de \mathbb{R}^2 . Deducir que f es localmente inyectiva.

Ejercicio 12. Sea U un abierto de \mathbb{R}^n y sea $f:U\longrightarrow\mathbb{R}^n$ de clase C^1 con jacobiano no nulo en todo $x\in U$.

- i) Probar que f es abierta.
- ii) Probar que para cada $y \in \mathbb{R}^n$, $f^{-1}(y)$ es un conjunto discreto.

Ejercicio 13. Sea $f: \mathbb{R}^3 \longrightarrow \mathbb{R}$ definida por $f(x, y, z) = x^2y + e^x + z$.

- i) Comprobar que f(0,1,-1) = 0 y $D_1 f(0,1,-1) \neq 0$.
- ii) Deducir la existencia de un entorno $U \subset \mathbb{R}^2$ de (1,-1) y una función $g:U \longrightarrow \mathbb{R}$ diferenciable tal que f(g(y,z),y,z)=0 para todo $(y,z)\in U$.
- iii) Hallar la ecuación del plano tangente al gráfico de g en el punto (1, -1, g(1, -1)).

Ejercicio 14. Sea $F: \mathbb{R}^2 \longrightarrow \mathbb{R}$ una función tal que (1,2,0) es solución de la ecuación F(xz,y-2x)=0.

- i) Hallar condiciones suficientes para que existan un entorno $W \subset \mathbb{R}^2$ del punto (1,0) y una función $\varphi: W \longrightarrow \mathbb{R}$ de clase C^1 tales que $\varphi(1,0) = 2$ y $F(x,z,\varphi(x,z) 2x) = 0$ para todo $(x,z) \in W$.
- ii) Probar que $x \frac{\partial \varphi}{\partial x}(x,y) y \frac{\partial \varphi}{\partial y}(x,y) = 2x$ para todo $(x,y) \in W$.

Ejercicio 15. Sea $f: \mathbb{R}^3 \to \mathbb{R}$ definida por $f(x, y, z) = x^2y + e^x + z$.

- a) Comprobar que f(0,1,-1) = 0 y $D_f(0,1,-1) \neq 0$.
- b) Deducir la existencia de un entorno $U \subset \mathbb{R}^2$ de (1,-1) y una función $g:U \to \mathbb{R}$ diferenciable tal que f(g(y,z),y,z)=0 para todo $(y,z)\in U$.
- c) Hallar la ecuación del plano tangente al gráfico de g en el punto (1, -1, g(1, -1)).

Ejercicio 16. Probar que la ecuación $x^2y - y^2x + z^2\cos(xz) = 1$ define una función implícita z = z(x,y) en un entorno del punto $(0,\sqrt{2},1)$. Hallar el plano tangente a la superficie z = z(x,y) en el punto $(0,\sqrt{2})$.

Ejercicio 17. Mostrar que el sistema de ecuaciones:

$$\begin{cases} 3x + y - z + u^2 &= 0\\ x - y + 2z + u &= 0\\ 2x + 2y - 3z + 2u &= 0 \end{cases}$$

puede resolverse para x, y, u en términos de z, para x, z, u en términos de y y para z, y, u en términos de x pero no para x, y, z en términos de u.

Ejercicio 18.

a) Probar que el sistema

$$\begin{cases} (x-2)^2 &= 1\\ e^{xy} + x^2 - z^2 &= 1 \end{cases}$$

define dos funciones implícitas y = y(x), z = z(x) en un entorno del punto (2,0,2).

- b) Sea α la curva parametrizada por $\alpha(x)=(x,y(x),z(x))$. Hallar el vector tangente a α en el punto x=2.
- c) Calcular la derivada direccional de la función $F(x,y,z) = \text{sen}(xy) + z^2$ en el punto (2,0,2) según la dirección del vector tangente a α en el punto x=2.

Ejercicio 19.

a) Probar que el sistema

$$\begin{cases} x^2 + \operatorname{sen}(x) - y^2 + z^3 = 0 \\ -\ln(1+x) + y^2 z = 0 \end{cases}$$

define dos funciones implícitas $y=y(x),\ z=z(x)$ en un entorno del punto (0,1,2). Sean $C\subset\mathbb{R}^2$ la curva que define el sistema de ecuaciones considerado, dada en forma paramétrica por $\alpha(x)=(x,y(x),z(x))$ y la función $g(x,y,z)=2xyz+z\tan(x)$. Calcular la derivada direccional de g en el punto (0,1,1) según el vector tangente a α en el punto x=0.