Práctica 5: Continuidad

Ejercicio 1. Sean (X, d) e (Y, d') espacios métricos y sea $f: X \longrightarrow Y$. Probar que:

- i) f es continua en $x_0 \in X$ si y sólo si para toda sucesión $(x_n)_{n \in \mathbb{N}} \subset X$ tal que $x_n \longrightarrow x_0$, la sucesión $(f(x_n))_{n \in \mathbb{N}} \subset Y$ converge a $f(x_0)$.
- ii) Son equivalentes:
 - (a) f es continua
 - (b) Para todo $G \subset Y$ abierto, $f^{-1}(G)$ es abierto en X
 - (c) Para todo $F \subset Y$ cerrado, $f^{-1}(F)$ es cerrado en X

Ejercicio 2. Sea $f:(X,d)\longrightarrow (Y,d')$ una función. Analizar la validez de las siguientes afirmaciones:

- i) Si $X = \bigcup_{i \in I} U_i$, con cada U_i abierto y $f|_{U_i}$ continua para todo $i \in I$, entonces $f: X \longrightarrow Y$ es continua.
- ii) Si $X = \bigcup_{i \in I} F_i$, con cada F_i cerrado y $f|_{F_i}$ continua para todo $i \in I$, entonces $f: X \longrightarrow Y$ es continua.
- iii) Si $X = \bigcup_{i=1}^m F_i$, con cada F_i cerrado y $f|_{F_i}$ continua para cada $i=1,\ldots,m$, entonces $f: X \longrightarrow Y$ es continua.
- iv) Si $X = \bigcup_{i=1}^{m} X_i$ y $f|_{X_i}$ continua para cada i = 1, ..., m, entonces $f: X \longrightarrow Y$ es continua.

Ejercicio 3. Sea (X,d) un espacio métrico y sea $f:X\to\mathbb{R}$. Probar que f es continua si y sólo si para todo $\alpha\in\mathbb{R}$, los conjuntos $\{x\in X:f(x)<\alpha\}$ y $\{x\in X:f(x)>\alpha\}$ son abiertos.

Ejercicio 4. Decidir cuáles de las siguientes funciones son continuas:

- i) $f:(\mathbb{R}^2,d)\longrightarrow (\mathbb{R},|\cdot|), f(x,y)=x^2+y^2$, donde d representa la métrica euclídea.
- ii) $id_{\mathbb{R}^2}:(\mathbb{R}^2,\delta)\longrightarrow(\mathbb{R}^2,d_{\infty})$, la función identidad, donde δ representa la métrica discreta.
- iii) $id_{\mathbb{R}^2}:(\mathbb{R}^2,d_{\infty})\longrightarrow(\mathbb{R}^2,\delta)$, la función identidad, donde δ representa la métrica discreta.
- iv) $i:(E,d)\longrightarrow (X,d)$, la inclusión, donde $E\subset X$

Ejercicio 5. Sean $f, g, h : [0, 1] \longrightarrow \mathbb{R}$ definidas por

$$f(x) = \begin{cases} 0 & \text{si } x \notin \mathbb{Q}, \\ 1 & \text{si } x \in \mathbb{Q}. \end{cases} \qquad g(x) = x. f(x) \qquad h(x) = \begin{cases} 0 & \text{si } x \notin \mathbb{Q}, \\ \frac{1}{n} & \text{si } x = \frac{m}{n}, \ (m:n) = 1, \\ 1 & \text{si } x = 0. \end{cases}$$

Probar que:

- i) f es discontinua en todo punto
- ii) q sólo es continua en x=0

iii) h es continua en $[0,1] - \mathbb{Q}$

Ejercicio 6. Probar que un espacio métrico X es discreto si y sólo si toda función de X en un espacio métrico arbitrario es continua.

Ejercicio 7. Métricas topológicamente equivalentes:

i) Supongamos que existen constantes $c_1, c_2 \in \mathbb{R}_{>0}$ tales que

$$d_1(x,y) \le c_1 \ d_2(x,y) \le c_2 \ d_1(x,y)$$
, para todo $x,y \in X$.

Probar que d_1 y d_2 son topológicamente equivalentes.

- ii) Probar que d_1 y d_2 son topológicamente equivalentes si y sólo si la función identidad $id_X: (X, d_1) \longrightarrow (X, d_2)$ es un homeomorfismo.
- iii) Consideramos en \mathbb{R} la métrica $d'(x,y) = \left| \frac{x}{1+|x|} \frac{y}{1+|y|} \right|$.

Probar que (\mathbb{R}, d') es topológicamente equivalente a \mathbb{R} con la métrica usual d(x, y) = |x - y|, pero que (\mathbb{R}, d') no es completo.

Ejercicio 8. Considerando en cada \mathbb{R}^n la métrica euclídea, probar que:

- i) $\{(x,y) \in \mathbb{R}^2 / x^2 + y \operatorname{sen}(e^x 1) = -2\}$ es cerrado.
- ii) $\{(x, y, z) \in \mathbb{R}^3 / -1 \le x^3 3y^4 + z 2 \le 3\}$ es cerrado.
- iii) $\{(x_1, x_2, x_3, x_4, x_5) \in \mathbb{R}^5 / 3 < x_1 x_2\}$ es abierto.

Mencione otras dos métricas para las cuales siguen valiendo estas afirmaciones.

Ejercicio 9. Consideramos las funciones $E, I : C([0,1]) \to \mathbb{R}$ definidas por:

$$E(f) = f(0) \text{ y } I(f) = \int_0^1 f(x) dx$$

- 1. Demostrar que si utilizamos en C([0,1]), la distancia d_{∞} ambas resultan continuas.
- 2. Demostrar que si, en cambio, utilizamos en C([0,1]) la distancia d_1 , I es una función continua pero E no lo es.
- 3. Analizar si es posible que una función $F: C([0,1]) \to \mathbb{R}$ sea continua para la distancia d_1 pero no para d_{∞} ?

Ejercicio 10. Sean X, Y espacios métricos y sea $f: X \longrightarrow Y$ una función continua. Probar que el gráfico de f, definido por

$$G(f) = \{(x, f(x)) \in X \times Y : x \in X\}$$

es cerrado en $X \times Y$ con la métrica d_{∞} . ¿Es cierta la afirmación recíproca?

Ejercicio 11. Sea (X, d) un espacio métrico y sea A un subconjunto de X. Probar que la función $d_A: X \longrightarrow \mathbb{R}$ definida por $d_A(x) = d(x, A) = \inf_{a \in A} d(x, a)$ es (uniformemente) continua.

Ejercicio 12. Teorema de Urysohn.

Sea (X,d) un espacio métrico y sean A,B cerrados disjuntos de X.

i) Probar que existe una función $f: X \longrightarrow \mathbb{R}$ continua tal que:

$$f|_A \equiv 0$$
 , $f|_B \equiv 1$ y $0 \le f(x) \le 1 \quad \forall x \in X$

Sugerencia: Considerar la función $f(x) = \frac{d_A(x)}{d_A(x) + d_B(x)}$

ii) Deducir que existen abiertos $U, V \subset X$ disjuntos tales que $A \subset U$ y $B \subset V$.

Ejercicio 13. Sea (X, d) un espacio métrico, y sea $\Delta : X \longrightarrow X \times X$ la aplicación diagonal definida por $\Delta(x) = (x, x)$. Probar que:

- i) Δ es un homeomorfismo entre X y $\{(x,x):x\in X\}\subset X\times X$.
- ii) $\Delta(X)$ es cerrado en $X \times X$.

Ejercicio 14. Sean (X,d) e (Y,d') espacios métricos. Una aplicación $f:X\longrightarrow Y$ se dice abierta si f(A) es abierto para todo abierto $A\subset X$ y se dice cerrada si f(F) es cerrado para todo cerrado $F\subset X$.

- i) Probar que si f es biyectiva entonces, f es abierta (cerrada) si y sólo si f^{-1} es continua.
- ii) Dar un ejemplo de una función de \mathbb{R} en \mathbb{R} continua que no sea abierta.
- iii) Dar un ejemplo de una función de \mathbb{R} en \mathbb{R} continua que no sea cerrada.
- iv) Mostrar con un ejemplo que una función puede ser biyectiva, abierta y cerrada pero no continua.

Ejercicio 15. Sean (X, d) e (Y, d') espacios métricos y sea $f: X \longrightarrow Y$ una función.

- i) Probar que f es continua si y sólo si $f(\overline{E}) \subset \overline{f(E)}$ para todo subconjunto $E \subset X$. Mostrar con un ejemplo que la inclusión puede ser estricta.
- ii) Probar que f es continua y cerrada si y sólo si $f(\overline{E}) = \overline{f(E)}$ para todo subconjunto $E \subset X$.

Ejercicio 16.

- i) Sean (X, d) e (Y, d') espacios métricos y sea $D \subset X$ denso. Sean $f, g : X \longrightarrow Y$ funciones continuas. Probar que si $f|_{D} = g|_{D}$, entonces f = g.
- ii) Sea $f : \mathbb{R} \longrightarrow \mathbb{R}$ una función continua tal que f(x+y) = f(x) + f(y) para todo $x, y \in \mathbb{Q}$. Probar que existe $\alpha \in \mathbb{R}$ tal que $f(x) = \alpha x$ para todo $x \in \mathbb{R}$.

Ejercicio 17. Sean X, Y espacios métricos. Sea $f: X \longrightarrow Y$ una función continua y survectiva.

- i) Probar que si X es separable, entonces Y es separable.
- ii) ¿Es cierto que si X es completo, entonces Y es completo?

Ejercicio 18. Sean (X,d) e (Y,d') espacios métricos. Consideramos en $X \times Y$ la métrica d_{∞} .

- i) Probar que las proyecciones $\pi_1: X \times Y \longrightarrow X$ y $\pi_2: X \times Y \longrightarrow Y$ son continuas y abiertas.
 - Mostrar con un ejemplo que pueden no ser cerradas.
- ii) Sea (Z, δ) un espacio métrico y sea $f: Z \longrightarrow X \times Y$ una aplicación. Probar que f es continua si y sólo si $f_1 = \pi_1 \circ f$ y $f_2 = \pi_2 \circ f$ lo son.

Ejercicio 19. Sea (X, d) un espacio métrico y sea $f: X \longrightarrow \mathbb{R}$ una función. Se dice que f es semicontinua inferiormente (resp. superiormente) en $x_0 \in X$ si para todo $\varepsilon > 0$ existe $\delta > 0$ tal que

$$d(x, x_0) < \delta \Longrightarrow f(x_0) < f(x) + \varepsilon$$
 (resp. $f(x_0) + \varepsilon > f(x)$)

Probar que:

- i) f es continua en x_0 si y sólo si f es semicontinua inferiormente y superiormente en x_0 .
- ii) f es semicontinua inferiormente si y sólo si $f^{-1}(\alpha, +\infty)$ es abierto para todo $\alpha \in \mathbb{R}$.
- iii) f es semicontinua superiormente si y sólo si $f^{-1}(-\infty, \alpha)$ es abierto para todo $\alpha \in \mathbb{R}$.
- iv) si $A \subset X$ es un abierto $\mathcal{X}_{\mathcal{A}}$ es semicontinua inferiormente y si $F \subset X$ es un cerrado $\mathcal{X}_{\mathcal{F}}$ es semicontinua superiormente.