PRÁCTICA 7: CONEXIÓN

Conexión

Ejercicio 1. Decidir cuáles de los siguientes subconjuntos son conexos:

$$\{x\in\mathbb{R}^2\;/\;0<|x|<2\} \qquad,\qquad \mathbb{N}\qquad,\qquad [0,1)\qquad,\qquad \mathbb{Q}$$

$$\{\tfrac{1}{n}\;/\;n\in\mathbb{N}\} \qquad,\qquad B(a,\varepsilon) \text{ en un espacio métrico } (X,d).$$

Ejercicio 2. Dar ejemplos de conjuntos conexos $A, B \subseteq \mathbb{R}^n$ tales que $A \cap B$ no sea conexo. Idem para $A \setminus B$.

Ejercicio 3. Sean X un espacio métrico y $C \subseteq X$.

- (a) Probar que si C es conexo y x es un punto de acumulación de C, entonces $C \cup \{x\}$ es conexo.
- (b) Determinar la validez de las siguientes afirmaciones:
 - I. Si C es conexo, entonces C° es conexo.
 - II. Si C es conexo, entonces \overline{C} es conexo.

Ejercicio 4. Sea (X,d) un espacio métrico y sea $C \subseteq X$. Probar que son equivalentes:

- (a) C es conexo.
- (b) No existen \mathcal{U}, \mathcal{V} abiertos en X y disjuntos, de modo que $C \cap \mathcal{U} \neq \emptyset, C \cap \mathcal{V} \neq \emptyset$ y $C \subseteq \mathcal{U} \cup \mathcal{V}$.
- (c) Si $A \subseteq C$ es no vacío y abierto y cerrado en C, entonces A = C.
- (d) Toda función $f: C \to \{0,1\}$ continua es constante.

Ejercicio 5. Sea (X,d) un espacio métrico y sea \mathcal{A} una familia de conjuntos conexos de X tal que para cada par de conjuntos $A, B \in \mathcal{A}$ existen $A_0, \ldots, A_n \in \mathcal{A}$ que satisfacen $A_0 = A$, $A_n = B$ y $A_i \cap A_{i+1} \neq \emptyset$ para cada $i = 0, \ldots, n-1$. Probar que $\bigcup_{A \in \mathcal{A}} A$ es conexo.

Ejercicio 6. Sea $f: \mathbb{R} \longrightarrow \mathbb{Z}$ continua. Probar que f es constante.

Ejercicio 7. Probar que si $n \geq 2$ no existe un homeomorfismo entre \mathbb{R} y \mathbb{R}^n .

Ejercicio 8.

- (a) Probar que si $f:[0,1] \longrightarrow [0,1]$ es continua, existe $x_0 \in [0,1]$ tal que $f(x_0) = x_0$.
- (b) Sea (X,d) un espacio métrico conexo y sea $f:X\longrightarrow\mathbb{R}$ una función continua. Sean $a,b\in f(X)$ tales que $a\leq b$. Probar que para todo $c\in [a,b]$ existe $x\in X$ tal que f(x)=c. ¿Vale la recíproca?
- (c) Probar que si (X, d) es conexo, entonces #X = 1 o $\#X \ge c$.

Ejercicio 9. Hallar las componentes conexas de los siguientes subconjuntos de \mathbb{R} y de \mathbb{R}^2

(a)
$$\arcsin(\left[\frac{\sqrt{2}}{2},1\right])$$

(c)
$$B((-1,0),1) \cup B((1,0),1)$$

(d)
$$B((-1,0),1) \cup B((1,0),1) \cup \{(0,0)\}$$

Ejercicio 10. Para cada $n \in \mathbb{N}$, sea $A_n = \{\frac{1}{n}\} \times [0,1]$, y sea $X = \bigcup_{n \in \mathbb{N}} A_n \cup \{(0,0),(0,1)\}$. Probar que:

- (a) $\{(0,0)\}$ y $\{(0,1)\}$ son componentes conexas de X
- (b) Si $B \subseteq X$ es abierto y cerrado en X, entonces $\{(0,0),(0,1)\}\subseteq B$ ó $\{(0,0),(0,1)\}\cap B=\emptyset$.

Ejercicio 11. Sea (X, d) un espacio métrico. Probar que las componentes conexas de X son conjuntos cerrados.

Arco Conexión

Ejercicio 12. Sea (X,d) un espacio métrico. Un conjunto $A \subseteq X$ se dice arcoconexo (o conexo por arcos) si para todo par de puntos $a,b \in A$ existe una función continua $f:[0,1] \to X$ tal que f(0) = a y f(1) = b.

- (a) Probar que todo conjunto arcoconexo es conexo.
- (b) Exhibir un ejemplo de un conjunto conexo que no sea arcoconexo.

Ejercicio 13. Decidir cuáles de los siguientes conjuntos son arcoconexos:

- (a) $\{(x,y,z)\in\mathbb{R}^3\mid z=f(x,y)\}$, donde $f:\mathbb{R}^2\longrightarrow\mathbb{R}$ es una función continua.
- (b) $B(0,1) \subseteq \mathbb{R}^n, \mathbb{R}^n \setminus B(0,1)$
- (c) $\mathbb{R}^2 \setminus \{(x,0) \mid x \in \mathbb{R}\}$
- (d) $\mathbb{R}^2 \setminus \{(0,0)\}$

Ejercicio 14. Sean (X,d) un espacio métrico arcoconexo, (Y,d') un espacio métrico y $f:X\to Y$ una función continua. Probar que el conjunto f(X) es arcoconexo.

Ejercicio 15. En el espacio $(C[0,1],d_{\infty})$ se considera el conjunto

$$U = \{ f \in C[0,1] : f(x) \neq 0 \ \forall \ x \in [0,1] \}.$$

Probar que U es abierto y hallar sus componentes conexas.