Práctica 4

- 1. Analizar en cada caso la existencia de $\int_a^b f \ d\alpha$ y en los casos afirmativos calcularla.
 - (a) $\alpha:[a,b]\to\mathbb{R}$ una función arbitraria y f una función constante sobre [a,b].
 - (b) $\alpha:[a,b]\to\mathbb{R}$ una función continua con $\alpha(a)=a_0$, $\alpha(b)=b_0$; sea $c\in(a,b)$ y sea $f:[a,b]\to\mathbb{R}$ la función $f(x):=\left\{\begin{array}{ll} 5 & \text{si } x\in[a,c)\\ 3 & \text{si } x=c\\ -1 & \text{si } x\in(c,b] \end{array}\right.$

¿Qué sucede si en lugar de tomar α continua sólo se sabe que α es continua en un entorno de c?

- (c) f como en el ítem anterior y $\alpha(x)=\left\{ \begin{array}{cc} 1 & \text{si } x\in[a,c] \\ -1 & \text{si } x\in(c,b] \end{array} \right.$
- (d) $f(x) = x^3$, $\alpha(x) = x^2$ y [a, b] = [-1, 3].
- (e) $f(x) = \alpha(x) = \cos(x)$ y $[a, b] = [0, \frac{\pi}{4}]$.
- 2. Supongamos que $\int_a^b f d\alpha$ existe y es igual a 0 para toda función monótona creciente f. ¿Qué puede decir sobre la función α ? Sugerencia. Para cada $c \in [a,b]$ considere la función monótona f_c definida como $f_c(x) = 0$ si $a \le x \le c$ y $f_c(x) = 1$ sino.
- 3. Sean $f, \alpha : [a, b] \to \mathbb{R}$. Para cada partición $\pi = \{x_0, ..., x_n\}$ del intervalo [a, b], se define $s_{\pi} := \sum_{k=1}^{n} f(t_k)[\alpha(x_k) \alpha(x_{k-1})]$, donde $t_k \in [x_{k-1}, x_k]$.

Demostrar que si $f \in \Re(\alpha)$ entonces existe una sucesión de particiones $(\pi_m)_{m \in \mathbb{N}}$ que cumple las condiciones:

- (a) $(\pi_m)_{m \in \mathbb{N}}$ es monótona en el sentido siguiente: si m < m' entonces $\pi_m \subset \pi_{m'}$.
- (b) $\lim_{m \to \infty} \| \pi_m \| = 0.$
- (c) $\lim_{m\to\infty} s_{\pi_m} = \int_a^b f\ d\alpha$, independientemente de la elección de los t_k en cada suma s_{π_m} .
- (d) Si $(\sigma_m)_{m\in\mathbb{N}}$ es otra sucesión monótona de particiones tal que $\pi_m\subset\sigma_m$ para todo $m\in\mathbb{N}$ suficientemente grande, entonces cumple las condiciones (b) y (c) precedentes.

Si ahora $g, \beta : [a, b] \to \mathbb{R}$ son otras funciones, tales que $g \in \Re(\beta)$ y para cada partición π notamos $r_{\pi} := \sum_{k=1}^{n} g(t_k)[\beta(x_k) - \beta(x_{k-1})]$, donde $t_k \in [x_{k-1}, x_k]$, deducir

que entonces existe una sucesión de particiones $(\pi_m)_{m\in\mathbb{N}}$ tal que $\lim_{m\to\infty} s_{\pi_m} = \int_0^{\infty} f d\alpha$ $y \lim_{m \to \infty} r_{\pi_m} = \int_{0}^{b} g \ d\beta.$

- 4. Sean $f,g:[a,b]\to\mathbb{R}$ y sea $\alpha:[a,b]\to\mathbb{R}$ monótona creciente. Demostrar que si $f, g \in \Re(\alpha)$ y $f(x) \leq g(x)$, entonces $\int_a^b f \ d\alpha \leq \int_a^b g \ d\alpha$.
- 5. Para cada $x \in \mathbb{R}$ denotamos con |x| a la parte entera de x, es decir: |x| := $\max \{ n \in \mathbb{Z} / n \le x \}.$

Analizar la existencia de las integrales que siguen y en caso afirmativo calcularla:

(a)
$$\int_{0}^{4} x^{2} d(\lfloor x \rfloor)$$

(a)
$$\int_{0}^{4} x^{2} d(\lfloor x \rfloor)$$
 (b)
$$\int_{0}^{2} x d(x - \lfloor x \rfloor)$$
 (c)
$$\int_{0}^{2} x^{2} d(|x|)$$

(c)
$$\int_{0}^{2} x^{2} d(|x|)$$

6. Sea $f:[a,b]\to\mathbb{R}$. Para cada partición π de [a,b] se define

$$\pi(f) := \sum_{k=1}^{n} |f(x_k) - f(x_{k-1})|,$$

 $si \pi = \{x_0, x_1, \dots, x_n\}.$

Demostrar que si $\pi_1 \subset \pi_2$ son dos particiones de [a, b], entonces $\pi_1(f) \leq \pi_2(f)$.

7. Estudiar si las funciones que siguen son de variación acotada en el intervalo [a, b]correspondiente y en el caso afirmativo dar una mayoración para $V_f(a,b)$.

(a)
$$f(x) = \cos(x)$$
 en $[0, 3\pi]$

(a)
$$f(x) = \cos(x)$$
 en $[0, 3\pi]$
(b) $f(x) =\begin{cases} \frac{1}{x} & \text{si } 0 < x \le 1\\ 0 & \text{si } x = 0 \end{cases}$
(c) $f(x) = 2x^3 - 3x^2$ en $[-1, 2]$
(d) $f(x) =\begin{cases} x^2 \sin(\frac{\pi}{x})^2 & 0 < x \le 1\\ 0 & \text{si } x = 0 \end{cases}$

(c)
$$f(x) = 2x^3 - 3x^2$$
 en $[-1, 2]$

(d)
$$f(x) = \begin{cases} x^2 \sin\left(\frac{\pi}{x}\right)^2 & 0 < x \le 1\\ 0 & \text{si } x = 0 \end{cases}$$

En el caso (d) estudiar también la derivabilidad de f.

- 8. Demostrar que si f y g son funciones de variación acotada en [a,b] entonces fgtambién lo es.
- 9. Para las funciones de variación acotada que siguen, hallar la función V_f (recordamos que $V_f(a) = 0$ y $V_f(x) = V_f(a, x)$ si $a < x \le b$:

(a)
$$f(x) = \begin{cases} x+1 & -1 \le x < 0 \\ x & 0 \le x < 1 \\ 1-x & 1 \le x \le 2 \end{cases}$$
 (b) $f(x) = \sin x$ en $[0, 2\pi]$

Para cada función encontrar explícitamente funciones monótonas crecientes g_1 y g_2 tales que $f = g_1 - g_2$.

10. Demostrar que si $f:[a,b]\to\mathbb{R}$ es una función de variación acotada entonces es integrable Riemann.

- 11. Sea $f:[a,b] \to \mathbb{R}$ una función de clase C^1 en [a,b].
 - (a) Demostrar que f es de variación acotada.
 - (b) Demostrar que vale la igualdad $V_f(a,b) = \int_a^b |f'(x)| \ dx$.
- 12. Sea $f,\alpha:[a,b]\to\mathbb{R}$ tales que fes una función continua y α es de variación acotada.
 - (a) Demostrar que $|f| \in \Re(V_{\alpha})$.
 - (b) Demostrar que vale la desigualdad $\left| \int_a^b f \ d\alpha \right| \leq \int_a^b |f| \ dV_{\alpha}$. Sugerencia. Tener en cuenta el ejercicio 3.
 - (c) Deducir de (b) que $\left| \int_a^b f \ d\alpha \right| \leq V_{\alpha}(a,b) \max_{x \in [a,b]} |f(x)|$.
 - (d) Para cada $x \in [a,b]$ se define $\psi(x) = \int_a^x f \ d\alpha$ (observar que ψ está bien definida). Probar que ψ es de variación acotada.