Práctica No. 4

- 1. Analizar en cada caso la existencia de $\int\limits_a^b f\ d\alpha$ y calcular
la cuando exista.
 - (a) $\alpha:[a,b]\to\mathbb{R}$ una función arbitraria y f constante sobre [a,b].
 - (b) $\alpha:[a,b]\to\mathbb{R}$ una función continua con $\alpha(a)=a_0$, $\alpha(b)=b_0$; sea $c\in(a,b)$ y sea $f:[a,b]\to\mathbb{R}$ la función $f(x):=\begin{cases} 5 & \text{si } x\in[a,c)\\ 3 & \text{si } x=c\\ -1 & \text{si } x\in(c,b] \end{cases}$.

¿Qué sucede si en lugar de tomar α continua sólo se sabe que α es continua en c?

- (c) f como en el ítem anterior y $\alpha(x) = \begin{cases} 1 & \text{si } x \in [a, c] \\ -1 & \text{si } x \in (c, b] \end{cases}$.
- (d) $f(x) = x^3$, $\alpha(x) = x^2$ y [a, b] = [-1, 3].
- (e) $f(x) = \alpha(x) = \cos(x)$ y $[a, b] = [0, \frac{\pi}{4}]$.
- 2. Supongamos que $\int_a^b f d\alpha$ existe y es igual a 0 para toda función monótona creciente f. ¿Qué puede decir sobre la función α ? [Sug.: para cada $c \in [a, b]$ considere la función monótona f_c definida como $f_c(x) = 0$ si $a \le x \le c$ y $f_c(x) = 1$ sino.]
- 3. Sean $f, \alpha : [a, b] \to \mathbb{R}$. Para cada partición $\pi = \{x_0, ..., x_n\}$ del intervalo [a, b], se define $s_{\pi} := \sum_{k=1}^{n} f(t_k)[\alpha(x_k) \alpha(x_{k-1})]$, donde $t_k \in [x_{k-1}, x_k]$.
 - (a) Demostrar que si $f \in \Re(\alpha)$ entonces existe una sucesión de particiones $(\pi_m)_{m \in \mathbb{N}}$ que cumple todas las condiciones siguientes:
 - i. $(\pi_m)_{m \in \mathbb{N}}$ es monótona en el sentido siguiente: si m < m' entonces $\pi_m \subset \pi_{m'}$.
 - ii. $\lim_{m\to\infty} \parallel \pi_m \parallel = 0.$
 - iii. $\lim_{m\to\infty} s_{\pi_m} = \int_a^b f \ d\alpha$, independientemente de la elección de los t_k en cada suma s_{π_m} .
 - iv. Si $(\sigma_m)_{m\in\mathbb{N}}$ es otra sucesión monótona de particiones tal que $\pi_m \subset \sigma_m$ para todo $m \in \mathbb{N}$ suficientemente grande, entonces cumple las condiciones ii. y iii. precedentes.

- (b) Si ahora $g, \beta : [a, b] \to \mathbb{R}$ son otras funciones, tales que $g \in \Re(\beta)$ y para cada partición π notamos $r_{\pi} := \sum_{k=1}^{n} g(t_{k})[\beta(x_{k}) \beta(x_{k-1})]$, donde $t_{k} \in [x_{k-1}, x_{k}]$, deducir que entonces existe una sucesión de particiones $(\pi_{m})_{m \in \mathbb{N}}$ tal que $\lim_{m \to \infty} s_{\pi_{m}} = \int_{a}^{b} f d\alpha$ y $\lim_{m \to \infty} r_{\pi_{m}} = \int_{a}^{b} g d\beta$.
- 4. Otra definición de integral de Riemann-Stieltjes ¹

Con las mismas notaciones que en el ejercicio anterior: sean $f, \alpha : [a, b] \to \mathbb{R}$, diremos que f es integrable Riemann-Stieltjes* con respecto a la función α (notaremos $f \in \mathbb{R}^*(\alpha)$) si se cumple: existe un $A \in \mathbb{R}$ tal que para todo $\varepsilon > 0$ existe $\delta > 0$ tal que $|s_{\pi} - A| < \varepsilon$ para toda partición π con $||\pi|| < \delta$, independientemente de los valores de t_k . En este caso diremos que A es la integral de Riemann-Stieltjes* de f respecto g.

- (a) Demostrar que $\Re^{\bigstar}(\alpha) \subseteq \Re(\alpha)$.
- (b) Sean $f, \alpha : [a, b] \to \mathbb{R}$ definidas así: si $c \in (a, b)$ entonces $f(x) = \alpha(x) = 0$ para $a \le x < c$, $f(x) = \alpha(x) = 1$ para $c < x \le b$, f(c) = 0 y $\alpha(c) = 1$. Demostrar que $f \in \Re(\alpha)$ pero que $f \notin \Re^{\bigstar}(\alpha)$.

[Sug.: considere particiones π tales que $c \in \pi$ para ver que $f \in \Re(\alpha)$ y particiones π' tales que $c \notin \pi'$ para ver que $f \notin \Re^{\bigstar}(\alpha)$.]

- 5. Sean $f; \alpha : [a, b] \to \mathbb{R}$ y sea $c \in (a, b)$ tales que $\int_a^c f \ d\alpha$ y $\int_c^b f \ d\alpha$ existen.

 Demostrar que $\int_a^b f \ d\alpha$ también existe y que vale la igualdad: $\int_a^c f \ d\alpha + \int_c^b f \ d\alpha = \int_a^b f \ d\alpha$.
- 6. Sean $f, g : [a, b] \to \mathbb{R}$ y sea $\alpha : [a, b] \to \mathbb{R}$ monótona creciente. Demostrar que si $f, g \in \Re(\alpha)$ y $f(x) \leq g(x)$, entonces $\int_a^b f \ d\alpha \leq \int_a^b g \ d\alpha$.
- 7. Para cada $x \in \mathbb{R}$ denotamos con $\lfloor x \rfloor$ a la parte entera de x, es decir: $\lfloor x \rfloor := \max \{ n \in \mathbb{Z} \ / \ n \leq x \}$. Analizar la existencia de las integrales que siguen y en caso afirmativo calcularla:

(a)
$$\int_{0}^{4} x^{2} d(\lfloor x \rfloor)$$
 (b)
$$\int_{0}^{2} x d(x - \lfloor x \rfloor)$$
 (c)
$$\int_{0}^{2} x^{2} d(|x|)$$

¹ De la parte (b) de este ejercicio se deduce que la definición de integral de Riemann-Stieltjes[★] no es equivalente a la dada en clase; sin embargo la mayoría de las propiedades generales se preservan con ligeras modificaciones.