Ecuaciones Diferenciales - Lista adicional de ejercicios

13 de diciembre de 2002

La siguiente es una selección de ejercicios de prácticas y parciales viejos, de los temas correspondientes al primer parcial.

1. Sea \mathcal{J} la funcional dada por

$$\mathcal{J}(y) = \int_0^1 (ty^2)^2 + r(t)yy' + (y')^2 dt$$

con $r \in C^1$ decreciente. Probar:

- (a) Todo extremal de \mathcal{J} (con extremos fijos) es un mínimo.
- (b) Dados $\alpha, \beta \in \mathbb{R}$ existe a lo sumo un extremal $y \in C^2$ de \mathcal{J} tal que $y(0) = \alpha, \ y(1) = \beta$. Sug: si y_1, y_2 son extremales, verificar que $w = y_1 y_2$ no puede tener extremos en (0, 1).
- 2. Sea L el operador dado por $Lu = (x^2 3)u'' + 2xu' 6u$.
 - (a) Acotar los autovalores $\{\lambda_n\}_{n\geq 0}$ del problema

$$\begin{cases} Lu = \lambda u \\ u(-1) = u(1) = 0 \end{cases}$$

- (b) Probar que si la *n*-ésima autofunción es un polinomio de grado n, entonces $\lambda_n = N(N+1) 6$ y $N \ge n+2$.
- (c) Mostrar que la igualdad N=n+2 vale si y sólo si n=0, y deducir que L es un operador positivo.

3. Dado el problema

$$\begin{cases}
-y\partial_x u + x\partial_y u &= u \\
u|_{y=0} &= x^2
\end{cases}$$

probar que si $x \neq 0$ existe una única solución de clase C^1 definida en un entorno de (x,0). ¿Qué ocurre para x=0? (o bien: "Probar que no existe solución C^1 definida en un entorno de (x,0)")

4. Probar que la solución del problema de Cauchy

$$\begin{cases} u'' + u^2 &= u \\ u(0) &= \frac{3}{2} \\ u'(0) &= 0 \end{cases}$$

satisface: a) u es par.

- b) u > 0, u'(t) < 0 para t > 0.
- c) u está definida en \mathbb{R} , y $u \to 0$ para $|t| \to \infty$.

5. Resolver el siguiente problema:

$$\begin{cases} \partial_x u - \frac{1}{x^2} \partial_y u = yu \\ u|_{x=y} = xe^{x^2} \end{cases}$$

6. Sea L el operador definido por Lu=(-pu')'+qu, con $0 , <math>0 \le q \in C([a,b])$. Probar que si G es la función de Green asociada a L, y u_n es la n-ésima autofunción de L con autovalor λ_n , entonces

$$G(x,y) = \sum_{n} \frac{1}{\lambda_n} u_n(x) u_n(y)$$

7. Sea $A \in \mathbb{R}^{n \times n}$, y $\phi(t,X)$ el flujo asociado al problema X' = AX. Probar:

- a) $\frac{\partial}{\partial t}(D_X\phi) = AD_X\phi$.
- b) $\frac{\partial}{\partial t} det(D_X \phi) = tr(A) det(D_X \phi)$
- c) Deducir que si tr(A)=0, entonces $|\phi(V)|=|V|$ para todo $V\subset\mathbb{R}^n$ medible.

8. a) Encontrar los puntos críticos de la funcional

$$\int_0^\alpha (y')^2 - y^2 - 6ysen(2x)dx$$

con condiciones de borde y(0) = 0, $y(\alpha) = A$.

- b) Probar que si α es suficientemente pequeño, entonces el punto crítico obtenido en a) es un mínimo. Calcular α explícitamente.
- 9. Sea $A \in C(\mathbb{R}, \mathbb{R}^{n \times n})$ simétrica con autovalores $\alpha_1(t) \leq \ldots \leq \alpha_n(t) \leq c < 0$. Probar que si X es solución de la ecuación X' = A(t)X, entonces $X(t) \to 0$ para $t \to +\infty$.
- 10. Sea $A \in C^0(I, \mathbb{C}^{n \times n})$ donde $I \subset \mathbb{R}$ es un intervalo, para $s \in I$ se considera el problema de valores iniciales

$$\begin{cases} \dot{x}(t) = A(t) x(t) & t \in I \\ x(s) = x_0 \end{cases}$$

- (a) Probar que x(t) se anula en un punto si y solo si x(t) es siempre nula.
- (b) Probar que el flujo $\phi(t, s, x_0) = x(t)$ es lineal en x_0 y vale $\phi \in C^1(I \times I, GL(n, \mathbb{C}))$.
- 11. Sea f(t,x) continua y Lipschtiz en la segunda variable, probar que si

$$\langle f(t,x), x \rangle \le C \|x\|^2$$

entonces el sistema $\dot{x}=f\left(t,x\right)$ tiene soluciones globalmente definidas para toda condición inicial.

12. Sea $f(t, x, \alpha)$ una función continua en $\mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^m$, Lipschtiz en la segunda variable tal que si $|\alpha - \overline{\alpha}| \leq r$, las soluciones del sistema

$$\begin{cases} \dot{x}^{\alpha} = f(t, x^{\alpha}, \alpha) \\ x^{\alpha}(0) = x_0 \end{cases}$$

están definidas en [-T,T]. Probar que

$$\lim_{\alpha \to \overline{\alpha}} x^{\alpha} (t) = x^{\overline{\alpha}} (t)$$

13. Dado el sistema

$$\begin{cases} \dot{x}_1^{\varepsilon} = x_1^{\varepsilon} \\ \dot{x}_2^{\varepsilon} = x_1^{\varepsilon} + (1 + \varepsilon) x_2^{\varepsilon} \end{cases}$$

- (a) Obtener la solución $x^{\varepsilon}(t)$ que verifica $x^{\varepsilon}(0) = (1,0)$
- (b) Calcular $\lim_{\varepsilon \to 0} x^{\varepsilon}(t)$
- 14. Dadas $a\left(t,\lambda\right),b\left(t,\lambda\right)$ continuas, consideramos el problema

$$\begin{cases} \ddot{x}_{\lambda} + a(t,\lambda)\dot{x}_{\lambda} + b(t,\lambda)x_{\lambda} = 0\\ x_{\lambda}(0) = 0, \ \dot{x}_{\lambda}(0) = 1 \end{cases}$$

probar que, entonces $N\left(\lambda\right)=\#\left\{t\in(0,1):u_{\lambda}\left(t\right)=0\right\}$ es localmente constante si $u_{\lambda}\left(1\right)\neq0$