Ecuaciones Diferenciales - Práctica 2

1) Construir la función de Green asociada al problema

$$\begin{cases} -u'' = 0 \\ u(a) = u(b) = 0 \end{cases}$$

2) Resolver usando la función de Green:

(a)
$$\begin{cases} -u'' + u = f(t) \\ u(0) = u(1) = 0 \end{cases}$$

(b)
$$\begin{cases} -u'' + u = f(t) \\ u'(0) = u'(1) = 0 \end{cases}$$

(c)
$$\begin{cases} -u'' + u = e^t \\ u(0) = u'(1) = 0 \end{cases}$$

3) Sea u una solución no trivial de

$$u'' + qu = 0$$

i) Si q>0 en $(0,+\infty)$ y $\int_0^{+\infty}q(x)dx=\infty$, probar que u tiene infinitos ceros positivos. (Sugerencia: suponer que existe un último cero x_0 , e integrar por partes la ecuación $-\frac{u''}{u}=q$).

¿Vale el resultado sin la hipótesis $\int_0^{+\infty} q(x) dx = \infty$?

- iii) Si $q \leq 0$, probar que u'u es creciente, y que u tiene a lo sumo un cero.
- 4) Sean u, v tales que

$$-(pu')' + qu = 0$$

$$-(pv')' + \overline{q}v = 0$$

en donde $q \geq \overline{q}$. Si a y b son dos ceros consecutivos de u, probar que v se anula en (a,b) o v es un múltiplo de u (y $\overline{q}=q$).

Autovalores y autofunciones

5) Dados $p \in C^1([a,b])$, $q \in C([a,b])$, p > 0, $q \ge 0$, se considera el problema de autovalores

$$\begin{cases}
-(pu')' + qu = \lambda u & \text{en } (a, b) \\
u(a) = u(b) = 0
\end{cases}$$

Probar:

- i) El espacio asociado a un autovalor tiene dimensión 1.
- ii) Las autofunciones correspondientes a autovalores distintos son ortogonales en $L^2(a,b)$.
 - iii) Todos los autovalores son positivos.
- 6) Para el problema del ejercicio anterior, probar:
 - i) La autofunción u_0 asociada al menor autovalor λ_0 no se anula en (a,b) .
 - ii) La n-ésima autofunción u_n tiene por lo menos n ceros en (a,b).
- iii) Si \overline{a} y \overline{b} son dos ceros consecutivos de u_n , entonces u_n es la autofunción asociada al menor autovalor del problema equivalente en $[\overline{a}, \overline{b}]$.
- iv) Si $a \leq \overline{a} < \overline{b} \leq b$, $\overline{p} \geq p$, $\overline{q} \geq q$, entonces el menor autovalor $\overline{\lambda}_0$ del problema

$$\begin{cases} -(\overline{p}u')' + \overline{q}u = \overline{\lambda}u & \text{en } (\overline{a}, \overline{b}) \\ u(\overline{a}) = u(\overline{b}) = 0 \end{cases}$$

verifica: $\overline{\lambda}_0 \geq \lambda_0$.

- v) Probar que $\overline{\lambda}_n \geq \lambda_n$ para todo n.
- 7) Hallar cotas para el n-ésimo autovalor de

$$\begin{cases} -((1+t^2)u')' + tu = \lambda u & \text{en } (0,1) \\ u(0) = u(1) = 0 \end{cases}$$