Ecuaciones Diferenciales - Practica 9

- 1) Sea $\{u_n\}$ una sucesión de funciones armónicas en un abierto $\Omega \subset \mathbb{R}^n$ tal que $u_n \to u$ uniformemente sobre cualquier compacto $K \subset \Omega$. Probar que u es armónica.
- 2) Sea $u: \mathbb{R}^n \to \mathbb{R}$ armónica y acotada. Probar que u es constante.
- 3) Sea $\Omega \subset {\rm I\!R}^n$ un abierto acotado, y sea $u \in C^2(\Omega) \cap C(\overline{\Omega})$ tal que $\Delta u \geq 0$. Probarque

$$\sup_{x\in\Omega}u(x)=\sup_{x\in\partial\Omega}u(x)$$

- 4) Dada $u \in C^2(\Omega) \cap C(\overline{\Omega})$, u se dice subarmónica si para toda bola $\overline{B} \subset \Omega$ y toda h armónica tal que $u \leq h$ en ∂B vale que $u \leq h$ en B. Probar que u es subarmónica si y sólo si $\Delta u \geq 0$.
- 5) Sea $\Omega \subset \mathbb{R}^n$ un abierto acotado, y sea $u \in C^2(\Omega) \cap C(\overline{\Omega})$ armónica. Probar que

$$\sup_{x \in \Omega} |u(x)| = \sup_{x \in \partial \Omega} |u(x)|$$

6) Sea $D=\{x\in \mathbb{R}^2/a<\|x\|< b\}$, y sea $u\in C^2(D)\cap C(\overline{D})$ armónica. Dado $a\le r\le b$ se define $M(r)=\sup_{\|x\|=r}|u(x)|$. Probar que

$$M(r) < \sigma M(a) + (1 - \sigma)M(b)$$

para $\sigma = (\log b - \log r)/(\log b - \log a)$.

Sugerencia: usar que log||x|| es armónica en D, y el principio del máximo.

7) Sean $\Omega \subset \mathbb{R}^n$ abierto y $u:\Omega \to \mathbb{R}$ armónica. Dado $x\in \Omega$ tal que $B=B_R(x)\subset \Omega$, probar que

$$|\partial_i u(x)| \leq \frac{n}{R} ||u|_{\partial B}||_{\infty}$$

Sug: observar que si u es armónica entonces ∇u es armónica.

8) Sea $\Omega \subset C$ un abierto simplemente conexo y $u:\Omega \to \mathbb{R}$ una función C^2 . Probar que u es armónica si y sólo si existe una función f holomorfa en Ω tal que $u = \operatorname{Re}(f)$. ¿ qué sucede si Ω no es simplemente conexo ?

- 9) Mostrar que $(4\pi|x|)^{-1}e^{-c|x|}$ es una solución fundamental para el operador $-\Delta+c^2$ en \mathbb{R}^3 .
- 10) Sea $\{u_n\}$ una sucesión de funciones armónicas en un abierto acotado $\Omega \subset \mathbb{R}^n$ tal que $u_n \to u$ en $L^2(\Omega)$. Probar que u es igual en casi todo punto a una función armónica.
- 11) Sea $\Omega \subset \mathbb{R}^n$ un abierto. Probar que si $u \in C^2(\Omega)$ es subarmónica, y $\overline{B}(x_0, r) \subset \Omega$ entonces

$$u(x_0) \le \frac{1}{|B(x_0, r)|} \int_{B(x_0, r)} u(x) dx$$

Reciprocamente, probar que esta propiedad caracteriza a las funciones subarmónicas.

12) Sea $\Omega \subset \mathbb{R}^n$ un abierto acotado. Probar que si $u \in H^1_0(\Omega)$ minimiza el cociente

$$\frac{\int_{\Omega} |\nabla u|^2}{\int_{\Omega} u^2}$$

entonces existe un $\lambda \in \mathbb{R}$ tal que $-\Delta u + \lambda u = 0$,

Una pregunta para pensar: ¿ Qué se puede decir de las autofunciones y autovalores de este problema de Sturm-Liouville ? ¿ Cuáles son los autovalores y las autofunciones si $\Omega = [0,1] \times [0,1]$?