Ecuaciones Diferenciales AyB
Programa
- Revisión del teorema de Cauchy para ecuaciones diferenciales ordinarias.
Dependencia de los datos iniciales. Ejemplos de ecuaciones en derivadas
parciales. Problema de la existencia local de soluciones.
- Cálculo de variaciones en una dimensión. Variación primera y ecuación de
Euler. Lagrauge. Extremales. Sistemas de Hamilton. Problemas con extremidades
e isoperimétricos. Integrales múltiples.
- Método de separación de variables. Completitud del sistema de
autofunciones.
- Funciones armónicas. Solución al problema de Dirichlet en Rn.
Función de Geen y núcleo de Poisson en el semiespacio y la esfera. Teorema del
valor medio. Recíproca del teorema del valor medio. Principio del máximo.
Desigualdad de Harnack. Analiticidad de las funciones armónicas.
- Función de Dirac. Producto de convolución. Transformada de Fourier.
Transformada de la convolución. Teorema de inversión. Aplicación al cálculo de
soluciones fundamentales y a la resolución de problemas de valores iniciales
para el laplaciano, la ecuación de ondas, la del calor, y la de Schrodinger.
- El operador del calor. El núcleo de Gauss y sus aplicaciones. La ecuación
del calor en dominios acotados.
- La ecuación de ondas en 1, 2 y 3 dimensiones.
- Espacios de Sobolev y formulación variacional de problemas de contorno
unidimensionales. Problemas variacionales multidimensionales. Espacios de
Sobolev Wk,p. Existencia y unicidad del minimizante en
H1 para la integral de Dirichlet. Regularidad del minimizante.
Volver