Elementos de Cálculo Numérico (Cs. Biológicas)

Práctica N°1: Operaciones Vectoriales.

- 1. Dados los vectores $\vec{u} = (1, 2), \ \vec{v} = (-1, 3) \ y \ \vec{w} = (-1, -2)$ calcular analítica y gráficamente las siguientes operaciones:
 - (a) $\vec{u} + \vec{v}$; $\vec{v} + \vec{w}$.

- (d) $3\vec{u} + 3\vec{v}$; $3(\vec{u} + \vec{v})$.
- (b) $(\vec{u} + \vec{v}) + \vec{w}$; $\vec{u} + (\vec{v} + \vec{w})$.
- (e) $\vec{u} \vec{v}$.

- (c) $3\vec{u}$; $3\vec{v}$.
- 2. Sea $\vec{w} = (1,3) \in \mathbb{R}^2$. Graficar en el plano:
 - (a) $L = \{t \cdot \vec{w} : t \in \mathbb{R}\}.$
 - (b) $L = \{t \cdot \vec{w} : t \in \mathbb{R}_{\geq 0}\}.$
 - (c) $L = \{t \cdot \vec{w} : t \in \mathbb{R}, 1 < t < 2\}.$
- 3. Dados los vectores $\vec{u} = (0,1,2), \ \vec{v} = (1,1,0) \ \text{y} \ \vec{w} = (-1,1,1)$ calcular las operaciones:
 - (a) $\vec{u} + \vec{v}$.
- $(b) \ \vec{u} + \vec{v} + \vec{w}.$
- (c) $\vec{u} \vec{v}$.
- $(e) 3\vec{w}$. $(f) \vec{v} + \frac{2}{3}\vec{w}$.
- 4. En el bioterio observamos que el día primero de julio había 322 ratas de cepa α , 148 de cepa β y 290 de cepa γ . Durante el mes de julio se produjeron 104 nacimientos de cepa α , 48 de cepa β y 110 de cepa γ . A su vez murieron 220 animales, repartidos ordenadamente en 79 de la primera cepa, 51 de la segunda y 90 de la última cepa. Calcular el vector PIde población inicial, el vector N_7 de natalidad durante julio, el vector M_7 de mortalidad durante el mismo mes y el vector PF de población final al terminar el mes.
- 5. Calcular analítica y gráficamente el punto medio entre P y Q siendo P=(1,4) y Q=(3,2).
- 6. Dados los puntos A = (1, 7, 3), B = (-1, 3, 0) y C = (3, -4, 11) determinar:
 - (a) los vectores $\overrightarrow{AB} = B A$ y $\overrightarrow{BC} = C B$.
 - (b) el punto medio entre los puntos A y B.
- 7. Dados los vectores $\vec{v} = (1, -2, 2)$, $\vec{w} = (2, 0, 3)$ y $\vec{z} = (4, 4, 4)$ realizar las operaciones:
 - (a) $\vec{v} \cdot \vec{v}$; $\vec{w} \cdot \vec{w}$.
 - (b) $(\vec{v} + \vec{w}) \cdot \vec{z}$; $(\vec{v} \cdot \vec{z}) + (\vec{w} \cdot \vec{z})$.
 - (c) $\vec{v} \cdot \vec{w}$; $\vec{w} \cdot \vec{v}$; $(\vec{v} + \vec{w}) \cdot \vec{w}$; $(\vec{v} \cdot \vec{w}) + (\vec{w} \cdot \vec{w})$.
 - (d) $(3\vec{v}) \cdot \vec{w}$; $3(\vec{v} \cdot \vec{w})$; $\vec{v} \cdot (2\vec{w} 3\vec{v})$.
- 8. En el mismo bioterio del problema 4 los precios de los animales son \$1,50 por cada rata de cepa α , \$2,50 cada rata de cepa β y \$4 cada animal de cepa γ . Un comprador necesita 18 animales de cepa α , 24 de cepa β y 20 de cepa γ . Determinar el vector P de precios unitarios del bioterio, el vector C de compra del cliente y el valor total de la compra.

- 9. Calcular el módulo (o norma) de los vectores de \mathbb{R}^2 y \mathbb{R}^3 según corresponda:
 - (a) $\vec{u} = (1, 2), \ \vec{v} = (-1, 3), \ \vec{w} = (-1, -2), \ \vec{x} = (3, 0), \ \vec{y} = (-3, 4), \ \vec{z} = (\frac{3}{5}, \frac{4}{5}).$
 - (b) $\vec{u} = (0, 1, 2), \ \vec{v} = (1, 1, 0), \ \vec{w} = (-1, 1, 1).$
 - (c) (1,1,-1), (1,1,-2)+(3,5,6), (2,-1,3), $-2\cdot(2,-1,3)$ y $2\cdot(2,-1,3)$.
- 10. Normalizar cada uno de los vectores del problema anterior.
- 11. Determinar la distancia entre los siguientes pares de puntos:
 - (a) A = (1, -3); B = (0,0).(d) C = (1, 2, 3); D = (4, 1, -2).
 - (b) A = (1, -3); B = (4, 1).(e) C = (4, -2, 6); D = (3, -4, 4).
 - (c) A = (2, -3); B = (5, 3).(f) C = (1, 2, -3); D = (0, 3, 1).
- 12. Determinar todos los valores de $k \in \mathbb{R}$ que verifican:
 - (a) $\vec{v} = (4, k) \text{ y } ||\vec{v}|| = 5.$
 - (b) $\vec{v} = (1, k, 0) \text{ y } ||\vec{v}|| = 2.$
 - (c) $\vec{v} = k \cdot (2, 2, 1) \text{ y } ||\vec{v}|| = 1.$
 - (d) A = (1, 1, 1), B = (k, -k, 2) y d(A, B) = 2.
- 13. Sea $C = (1,1) \in \mathbb{R}^2$. Graficar en el plano los siguientes conjuntos:

 - $\begin{array}{ll} (a) \ S = \{A \in \mathbb{R}^2: & \|A\| = 1\}. \\ (b) \ S = \{A \in \mathbb{R}^2: & \|A C\| = 1\}. \end{array} \\ (c) \ S = \{A \in \mathbb{R}^2: & \|A\| \leq 1\}. \\ (d) \ S = \{A \in \mathbb{R}^2: & \|A C\| \leq 1\}. \\ \end{array}$
- 14. Determinar si los siguientes pares de vectores son ortogonales (perpendiculares) o no:
 - $\vec{w} = (-2, 2).$ (c) $\vec{v} = (1, 1, 1); \qquad \vec{w} = (1, 0, 1).$ (a) $\vec{v} = (1,1)$;
 - (b) $\vec{v} = (2, -3); \quad \vec{w} = (0, 0).$ (d) $\vec{v} = (1, -2, 4); \quad \vec{w} = (-2, 1, 1).$
- 15. Hallar:
 - (a) Tres vectores en el plano distintos entre sí que sean ortogonales al vector $\vec{v} = (2,3)$. ¿Qué relación encuentra entre los vectores hallados? Graficar.
 - (b) Todos los vectores de \mathbb{R}^2 que son ortogonales a $\vec{v} = (2, -2)$ y tienen norma 1.
 - (c) Tres vectores de \mathbb{R}^3 distintos entre sí que sean ortogonales al vector $\vec{v} = (1, 3, -4)$.
 - (d) Un vector del espacio ortogonal a $\vec{v} = (-1, 0, 2)$ y de norma 2. ¿Es único?
 - (e) Dos vectores ortogonales a $\vec{v} = (3, 2, 7)$ que no sean colineales (es decir, que no sean uno múltiplo del otro).
- 16. Hallar el ángulo que forman los siguientes pares de vectores:
 - (c) $\vec{v} = (1,2);$ $\vec{w} = (-2,1).$ (d) $\vec{v} = (1,-1,0);$ $\vec{w} = (0,1,1).$ (a) $\vec{v} = (1,0); \quad \vec{w} = (0,1).$
 - (b) $\vec{v} = (1, 1); \quad \vec{w} = (0, 1).$
- 17. Dados $\vec{u} = (3, 2, -1)$ y $\vec{v} = (0, 1, 2)$ determinar:
 - (a) el ángulo entre ambos vectores.
 - (b) el módulo de $\vec{u} \vec{v}$.
 - (c) un vector que sea simultáneamente ortogonal a \vec{u} y a \vec{v} .
- 18. Sean \vec{u} y \vec{v} en \mathbb{R}^3 dos vectores que verifican $||\vec{u}|| = 1$ y $||\vec{v}|| = 3$. ¿Es posible que $\vec{u} \cdot \vec{v} = 5$? Justificar.
- 19. Calcular el producto vectorial $\vec{v} \times \vec{w}$ para los siguientes vectores:
 - (a) $\vec{v} = (3, 5, 1); \quad \vec{w} = (3, 5, 1).$ (c) $\vec{v} = (7,4,3); \quad \vec{w} = (3,5,1).$
 - (b) $\vec{v} = (3, 5, 1); \quad \vec{w} = (7, 4, 3).$ (d) $\vec{v} = (2, 0, 0); \quad \vec{w} = (0, 0, 3).$

- 20. Sean $\vec{u} = (2, 1, -3)$ y $\vec{v} = (1, -2, 1)$ en \mathbb{R}^3 .
 - (a) Calcular $\vec{w} = \vec{u} \times \vec{v}$.
 - (b) Verificar que \vec{w} es ortogonal tanto a \vec{u} como a \vec{v} .
- 21. Sean $\vec{u}=(1,2,-3),\ \vec{v}=(-1,5,2),\ \vec{w}=(1,2,4)$ y $\vec{z}=(2,-4,8).$ Hallar en \mathbb{R}^3 :
 - (a) un vector no nulo que sea, simultáneamente, ortogonal a \vec{u} y \vec{v} . ¿Es único?
 - (b) todos los vectores que son, simultáneamente, ortogonales a \vec{w} y $\vec{z}.$
 - (c) un vector de norma 2 que sea, simultáneamente, ortogonal a \vec{w} y \vec{z} . ¿Es único?