ELEMENTOS DE CÁLCULO NUMÉRICO (Cs. BIOLÓGICAS)

Práctica N°6: Determinantes.

1. Calcular el determinante de cada una de las siguientes matrices:

(a)
$$\begin{pmatrix} 1 & 2 \\ 3 & -4 \end{pmatrix}$$
, (b) $\begin{pmatrix} 6 & 5 \\ \frac{3}{5} & \frac{1}{2} \end{pmatrix}$, (c) $\begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & 4 \\ 2 & 1 & 0 \end{pmatrix}$, (d) $\begin{pmatrix} -2 & 3 & 1 \\ 4 & 6 & 5 \\ 0 & 2 & 1 \end{pmatrix}$, (e) $\begin{pmatrix} 3 & -1 & 4 \\ 6 & 3 & 5 \\ 2 & -1 & 6 \end{pmatrix}$.

2. Para cada una de las siguientes matrices, hallar su determinante usando propiedades y realizando la menor cantidad de cálculos posibles.

(a)
$$\begin{pmatrix} 2 & -10 & 17 \\ 0 & 1 & 11 \\ 0 & 0 & 3 \end{pmatrix}$$
, (b) $\begin{pmatrix} 1 & 0 & 0 & 0 \\ -9 & -1 & 0 & 0 \\ 12 & 7 & 9 & 0 \\ 0 & -15 & 3 & 4 \end{pmatrix}$, (c) $\begin{pmatrix} 1 & 2 & 3 \\ 3 & 7 & 6 \\ 1 & 2 & 3 \end{pmatrix}$, (d) $\begin{pmatrix} 3 & -1 & 2 \\ 6 & -2 & 4 \\ 1 & 7 & 3 \end{pmatrix}$.

3. Calcular el determinante de cada una de las siguientes matrices:

(a)
$$\begin{pmatrix} 1 & -2 & 7 \\ 3 & 5 & 1 \\ 4 & 3 & 8 \end{pmatrix}$$
, (b) $\begin{pmatrix} 1 & 0 & 3 \\ 4 & 0 & -1 \\ 2 & 8 & 6 \end{pmatrix}$, (c) $\begin{pmatrix} 2 & 1 & 3 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 2 & 1 & 0 \\ 0 & 1 & 2 & 3 \end{pmatrix}$, (d) $\begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 1 & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{2}{3} & \frac{1}{3} & \frac{1}{3} & 0 \\ \frac{1}{3} & 1 & \frac{1}{3} & 0 \end{pmatrix}$,

e)
$$\begin{pmatrix} 0 & 4 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 5 & 0 & 0 & 0 & 0 \end{pmatrix}$$
, (f) $\begin{pmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 3 & 0 & 0 \\ 0 & 4 & 0 & 0 & 0 \\ 5 & 0 & 0 & 0 & 0 \end{pmatrix}$, (g) $\begin{pmatrix} 1 & 3 & 1 & 5 & 3 \\ -2 & -7 & 0 & -4 & 2 \\ 0 & 0 & 1 & 0 & 10 \\ 0 & 0 & 2 & 1 & 1 \\ 5 & 0 & 1 & 1 & 1 \end{pmatrix}$.

4. Hallar todos los $k \in \mathbb{R}$ tales que $\det(A) = 0$, para cada una de las siguientes matrices A:

(a)
$$\begin{pmatrix} k-1 & -2 \\ 1 & k-4 \end{pmatrix}$$
, (c) $\begin{pmatrix} k-1 & k+4 \\ k-2 & k+1 \end{pmatrix}$, (e) $\begin{pmatrix} 1 & k-1 & 2 \\ k & k^2-k & k^2 \\ 3k & k-1 & 5 \end{pmatrix}$.

(b)
$$\begin{pmatrix} k-1 & 2 \\ 4 & k-3 \end{pmatrix}$$
, (d) $\begin{pmatrix} k-6 & 0 & 0 \\ 0 & k & -1 \\ 0 & 4 & k-4 \end{pmatrix}$,

5. Sea $A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \in \mathbb{R}^{3\times3}$ tal que $\det(A) = 5$, calcular los determinantes de las matrices:

(a)
$$\begin{pmatrix} d & e & f \\ g & h & i \\ a & b & c \end{pmatrix}$$
, (c) $\begin{pmatrix} a+d & b+e & c+f \\ d & e & f \\ g & h & i \end{pmatrix}$, (e) $\begin{pmatrix} a & g & d \\ b & h & e \\ c & i & f \end{pmatrix}$.

(b)
$$\begin{pmatrix} -a & -b & -c \\ 2d & 2e & 2f \\ -g & -h & -i \end{pmatrix}$$
, (d) $\begin{pmatrix} a & b & c \\ d-3a & e-3b & f-3c \\ 2g & 2h & 2i \end{pmatrix}$,

6. Hallar **todos** los $k \in \mathbb{R}$ para los que A es inversible en cada uno de las siguientes casos:

(a)
$$\begin{pmatrix} 5 & 3 \\ k & 2 \end{pmatrix}$$
, (b) $\begin{pmatrix} 4 & k \\ k & -2 \end{pmatrix}$, (c) $\begin{pmatrix} 3 & 1 & 0 \\ 0 & 1 & k \\ 0 & 0 & 2 \end{pmatrix}$, (d) $\begin{pmatrix} 1 & 2 & k \\ k & 4 & 0 \\ 1 & 1 & 0 \end{pmatrix}$,

(f)
$$\begin{pmatrix} -1 & 0 & -1 \\ k & k+3 & 1 \\ k+2 & 1 & 3 \end{pmatrix}$$
, (g) $\begin{pmatrix} k & 2 & -1 & 0 \\ k & 3-k & -2 & 4 \\ -k & k-3 & 3-k^2 & 4k \\ k & k+1 & k^2-1 & 4+2k \end{pmatrix}$.

7. Sea $A \in \mathbb{R}^{4\times 4}$ tal que $\det(A) = 2$. Calcular:

- (a) $\det(A^3)$.
- (e) $\det(-2 \cdot A^{-3})$
- (b) $\det(A^{-3})$.
- (c) $\det(-2 \cdot A^3)$.
- (f) $\det((-2 \cdot A)^{-3})$. (g) $\det(B \cdot A \cdot B^{-1})$; $(B \in \mathbb{R}^{4 \times 4}$ inversible).
- (d) $\det((-2 \cdot A)^3)$.

8. Sean $A, B \in \mathbb{R}^{3\times 3}$ tales que $\det(A) = 4$ y $B = \begin{pmatrix} 1 & 2 & -1 \\ 0 & 0 & 3 \\ -2 & 1 & 1 \end{pmatrix}$. Calcular:

- (a) $\det(A + A \cdot B)$. (b) $\det(A^{-1} + A^{-1} \cdot B)$. (c) $\det(-2A + A \cdot 5B)$. (d) $\det((-2A^{-1} + A^{-1} \cdot 5B)$.

9. Sea $B \in \mathbb{R}^{5 \times 5}$ una matriz inversible y sea $A \in \mathbb{R}^{5 \times 5}$ una matriz que verifica: $\det(A) = 16$ y $A \cdot B = \det(B) \cdot I$. Hallar $\det(B)$.

10. Sean $A \in \mathbb{R}^{4 \times 3}$ y $B \in \mathbb{R}^{3 \times 4}$. Determinar **todos** los valores de $a \in \mathbb{R}$ para los cuales $B \cdot A \in \mathbb{R}^{3 \times 3}$ es inversible, siendo:

$$A = \begin{pmatrix} 2 & 1 & 1 \\ 4 & 1 & 6 \\ 1 & 1 & 0 \\ 4 - a & 3 & a^2 - 4 \end{pmatrix} \quad y \quad B = \begin{pmatrix} -1 & 0 & 2 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{pmatrix}.$$

11. Considerar el sistema lineal S: $\begin{cases} -x + \alpha y + z &= \alpha \\ -x + (1 - \alpha)z &= 1 \\ -x + y + z &= \alpha^2 \end{cases}$

- (a) Usando determinantes, clasificar el sistema en términos del valor α .
- (b) Sea A la matriz asociada a S. Si $\alpha = 200$, probar que A es inversible y hallar $\det(A^{-1})$.

12. Sean $M = \begin{pmatrix} \alpha + 1 & 1 & 0 \\ \alpha + 1 & \alpha & 2 \\ 2\alpha + 2 & \alpha + 1 & 3 \end{pmatrix}$, $b = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$ y $c = \begin{pmatrix} 2 \\ 3 \\ 5 \end{pmatrix}$. Sea $B \in \mathbb{R}^{3 \times 3}$ inversible tal que

- (a) Clasificar el sistema $A \cdot x = b$ en términos del valor α .
- (b) Para los valores de α tales que el sistema es compatible indeterminado, hallar el conjunto de soluciones de $A \cdot x = b$.

13. Hallar **todos** los $x \in \mathbb{R}^{3 \times 1}$ tales que $(B \cdot A) \cdot x = 2B \cdot x$ sabiendo que $B \in \mathbb{R}^{3 \times 3}$ con $\det(B) = 5$

$$y A = \begin{pmatrix} 4 & 0 & 1 \\ 0 & 4 & 1 \\ 1 & 1 & 3 \end{pmatrix}.$$

14. Rehacer, usando determinantes, el ejercicio 13 de la Práctica 2, para aquellos sistemas cuya matriz asociada sea cuadrada.

2