ELEMENTOS DE CALCULO NUMERICO

Práctica 5

1^{er} Cuatrimestre 2003

Ejercicio 1 Para cada uno de los conjuntos de datos dados, calcular el polinomio p(x) interpolador de grado menor o igual que 3, en la forma de Lagrange. Verifique utilizando el comando **polyfit** de Matlab. Grafique el polinomio interpolador, usando el comando **polyval**.

X	-1	0	2	3
у	-1	3	11	27
X	-1	0	1	2
у	-3	1	1	3

Ejercicio 2 Repetir el problema anterior, usando el método de coeficientes indeterminados.

Ejercicio 3 Construir la tabla de diferencias divididas para los datos del Ejercicio 1, y emplearla para construir el polinomio interpolador. Evaluar p(-2).

Ejercicio 4 Agregar a las tablas de datos del Ejercicio 1 el punto x = 4, y = 1. Aumentar la tabla de diferencias divididas, y evaluar el polinomio interpolador de grado 4 en x = -2.

Ejercicio 5 Utilizar el método de coeficientes indeterminados para hallar un polinomio de grado 2, p(x), que satisfaga:

$$p(1) = 0, \quad p'(1) = 7, \quad p(2) = 10$$

Ejercicio 6 Escribir una subrutina que en base a dos vectores de n datos, x e y, evalúe el polinomio que interpola dichos datos en un punto α .

Ejercicio 7 Considere la función $f(x)=\frac{1}{1+25x^2}$ en el intervalo [-1,1]. Evalúe numéricamente los polinomios que interpolan la función en n+1 puntos equiespaciados $x_0=-1,\ldots,x_i=x_0+\frac{2i}{n},\ldots,x_n=1$, para n=5,10,15. ¿Qué observa?. Compare con la figura.

Ejercicio 8 Suponga que para la función f(x) en el intervalo I es válida la acotación:

$$f^{(n+1)}(x) \le C^{n+1}(n+1)!$$

Encuentre un rango de valores de la constante C que garantice que el polinomio interpolador de grado n que interpola en n+1 puntos equiespaciados converja a la función cuando n tiende a ∞ .

Ejercicio 9 Sea $f(x) = \frac{1}{a+x}$, $x \in [-1,1]$ Sean $x_0, x_1, \dots, x_n, \dots$ una sucesion arbitraria de puntos en [-1,1] y $P_n(x)$ el polinomio que interpola a f(x) en x_0, x_1, \dots, x_n . Demostar que si a > 3 entonces $P_n(x)$ converge a f(x)

Ejercicio 10 Dibujar el polinomio $W_n(x) = \prod_{i=0}^n (x-x_i)$, donde $x_i = -1 + 2i/n$, e $i = 0, \ldots, n$ (n+1 puntos equiespaciados en el [-1,1]). Dibujar ahora el polinomio $W_n(x) = \prod_{i=0}^n (x-x_i)$, donde x_i son los ceros del polinomio de Chebyshev de grado n+1. Comparar.

Ejercicio 11 Repetir el Ejercicio 7 usando los polinomios que interpolan a la función en los ceros del polinomio de Chebychev de grado n + 1, para n = 5, 10, 15.

Ejercicio 12 Calcular el desarrollo de Taylor de e^x reteniendo términos que garanticen que en el intervalo [-1,1] el error sea menor que 10^{-10} . Escribir las potencias de x en términos de los polinomios de Chebychev, y determinar cuántos polinomios de Chebychev es necesario retener para mantener el error.

Ejercicio 13 Determinar el grado mínimo n que debe tener un polinomio que interpola en los ceros de T_{n+1} a la función $f(x) = e^{3x}$, $x \in [-1, 1]$, para que el error $||f - p||_{\infty} \le 10^{-10}$.

Ejercicio 14 Dada la función $f(x) = \frac{1}{(2+x)^2}$, considere el polinomio P_n que la interpola en puntos $x_0, x_1, ..., x_n$ pertenecientes al [0, 1].

a) Demuestre que

$$|f(x) - P_n(x)| \le \frac{n+2}{2^{n+2}} \|w\|_{\infty}$$

donde $||w||_{\infty} = \max_{0 \le x \le 1} \prod_{j=0}^{n} |x - x_j|$

- b) ¿Cómo elegiría x_0, x_1, \dots, x_n de manera que $||w||_{\infty}$ sea mínima?.
- c) Estime en cuántos puntos bastaría interpolar para tener error $< 10^{-3}$. al aproximar f(x) por $P_n(x)$ cualquiera sea $x \in [0, 1]$.

Ejercicio 15 Para ilustrar qué pasa cuando se desea interpolar no solo una función sino sus derivadas, considere los siguientes 3 problemas.

- a) Hallar p de grado a lo sumo 3 tal que p(0)=1, p'(0)=1, p'(1)=2, p(2)=1
- b) Hallar p de grado a lo sumo 3 tal que p(-1)=1, p'(-1)=1, p'(1)=2, p(2)=1
- c) Hallar p de grado a lo sumo 3 tal que p(-1)=1, p'(-1)=-6, p'(1)=2, p(2)=1

Usando el método de coeficientes indeterminados, demuestre que el problema a) tiene solución única, el problema b) no tiene solución, y el problema c) tiene infinitas.

Ejercicio 16 Analizar para qué valores de x_0 , x_1 , x_2 , y α_0 , α_1 , α_2 existe un polinomio de grado 2 que satisfaga:

$$p(x_0) = \alpha_0, \ p(x_1) = \alpha_1, \ p'(x_2) = \alpha_2$$

Ejercicio 17 Sea $f \in C^1([a,b])$. Escriba el polinomio de grado menor o igual que 2, $P_{x_0,x_1,x_2}(x)$, que interpola a f(x) en tres puntos distintos x_0 , x_1 y x_2 . Si se define la función Q por

$$Q(x) = \lim_{x_2 \to x_1} P_{x_0, x_1, x_2}(x)$$

pruebe que Q es el polinomio de interpolación de Hermite que satisfasce $Q(x_0) = f(x_0)$, $Q(x_1) = f(x_1)$ y $Q'(x_1) = f'(x_1)$.

Ejercicio 18 Sea $f \in C^2[a, b]$, y sean $x_0 = a, x_1 = a + h, \dots, x_n = b$, donde h = (b - a)/n. Considere la poligonal l(x) que interpola a f en los puntos x_i , $i = 0 \dots n$. Probar que

- i) $|f(x) l(x)| \le \frac{h^2}{2} \max_{x \in [a,b]} |f''(x)|$
- ii) $|f'(x) l'(x)| \le h \max_{x \in [a,b]} |f''(x)|$