Elementos de Cálculo Numérico

Primer cuatrimestre 2006

Práctica N°4: Resolución de ecuaciones no-lineales.

1. Elegir un intervalo apropiado y utilizar el método de bisección para hallar una raíz positiva de la ecuación trascendente:

$$2x = \tan(x)$$

¿Cuántos pasos hay que hacer para garantizar que el error sea menor que 10^{-5} ?

- 2. Hacer un programa en Matlab que ejecute los primeros 20 pasos de los métodos de bisección y Regula-Falsi para hallar una raíz de la ecuación $2x^3 + x 2 = 0$ comenzando con el intervalo [0, 1].
- 3. Para $f(x) = -2x^3 + 6x 1$ se desea aproximar la raíz $r \in (0,1)$ utilizando el método de bisección comenzando con $a_0 = 0$ y $b_0 = 1$. Determinar una cantidad de pasos a seguir para poder asegurar que $|f(a_n)| < 10^{-100}$ y $|f(b_n)| < 10^{-100}$.
- 4. Hacer un programa en Matlab para aproximar $\sqrt[3]{2}$ que ejecute los primeros 20 pasos del método de bisección, comenzando con el intervalo [1, 2], y del método N-R, comenzando con $x_0 = 2$.
- 5. Considerar la función $f(x) = \frac{x}{1+|x|}$. Determinar para qué valores de x_0 la iteración N-R es convergente, para cuáles es divergente, y cuándo se obtienen ciclos periódicos.
- 6. Sea f una función C^1 y sea $(x_n)_{n\in\mathbb{N}}$ la sucesión que se obtiene de aplicar el método N-R a f. Supongamos que x_n converge a r y $f'(r) \neq 0$, mostrar que r es raíz de f.
- 7. Demostrar que la ecuación

$$f(x) = e^x + 5\sin x - 2 = 0$$

tiene una única raíz r en el intervalo $(0, \frac{3}{2})$. Encontrar un valor inicial en este intervalo de modo que el método N-R converja a r (para ello, calcular cotas necesarias para |f'| y |f''| en el intervalo). Aplicar el método para hallar una aproximación de r. ¿Cuál es el orden de convergencia?

- 8. La ecuación $x^3 + \cos(x) + 7x = 0$ tiene una única raíz real.
 - Demostrar que el método de Newton-Raphson converge para todo valor inicial en (-1,0).
 - Demostrar que si $x_0 = -0.5$, el error *n*-ésimo es menor o igual que $\frac{12}{7}(\frac{7}{24})^{2^n}$.
 - Calcular cuántos pasos del método son necesarios para aproximar la solución con error menor o igual que 10^{-100} .
- 9. Sea f una función suave, y a tal que f(a) = 0, y $f'(a) \neq 0$. Suponiendo que en (a,b], f, f', f'' son positivas, probar que la iteración de N-R generada a partir de $x_0 \in (a,b)$ converge decrecientemente hacia a.

- 10. Sea $f : \mathbb{R} \to \mathbb{R}, \ f(x) = (x+1)e^x 4.$
 - (a) Probar que el método de Newton-Raphson es convergente para todo $x_0 > 1$.
 - (b) Analizar la convergencia del método si se toma como valor inicial $x_0 = -3$.
- 11. Sea $f(x) = x^{\alpha}$. Se desea utilizar el método N-R para resolver la ecuación f(x) = 0, comenzando con $x_0 > 0$. Analizar el comportamiento del método en los casos
 - (a) $\alpha \ge 1$ (b) $\alpha = \frac{1}{3}$ (c) $\alpha = \frac{1}{2}$
- 12. (a) Sea $P(x) = (x r_1)(x r_2) \dots (x r_d)$ donde $r_1 < r_2 < \dots < r_d$. Probar que si $x_0 > r_d$ la sucesión de N-R converge a r_d .
 - (b) Para un polinomio $P \in \mathbb{R}[x]$, $P(x) = a_d x^d + \cdots + a_0, a_d \neq 0$, tal que sus d raíces son reales y distintas, se propone el siguiente método que aproxima los valores de todas sus raíces:
 - i. Se comienza con un valor x_0 mayor que $M = \max\{1, \sum_{i=0}^{d-1} \frac{|a_i|}{|a_d|}\}$ (Dato: M es una cota para el módulo de todas las raíces del polinomio).
 - ii. Se genera a partir de x_0 la sucesión de N-R, que, según el ítem anterior, converge a la raíz más grande de P, llamémosla r_d ; obteniéndose de este modo un valor aproximado \tilde{r}_d .
 - iii. Se divide P por $x \tilde{r}_d$ y se desprecia el resto, dado que $r_d \sim \tilde{r}_d$. Se redefine ahora P como el resultado de esta división y se comienza nuevamente desde el primer ítem, para hallar las otras raíces.

Aplicar este método para aproximar todas las raíces del polinomio $P(x) = 2x^3 - 4x + 1$.

- 13. Aproximar la solución positiva de la ecuación $\cos(x) = 2x$, comenzando con $x_0 = 0.5$ y utilizando la iteración de punto fijo $x_{n+1} = \frac{1}{2}\cos(x_n)$. Graficar con Matlab la sucesión obtenida.
- 14. Sea $f(x) = x^3 x 1$. La ecuación f(x) = 0 tiene una única raíz en el intervalo (1,2). Se consideran las dos siguientes iteraciones del método de punto fijo para aproximar dicha raíz.

$$g(x) = x^3 - 1,$$
 $h(x) = \sqrt[3]{x+1}.$

- (a) Determinar cuáles de estas funciones son apropiadas para la iteración.
- (b) Para las que sí lo sean:
 - \bullet Determinar un intervalo inicial I en el cual el método converja.
 - Dar un valor inicial $x_0 \in I$ y la cantidad de iteraciones necesarias para aproximar la raíz de f con error menor que 10^{-5} comenzando con el x_0 dado.
- 15. Sea $f: \mathbb{R}_{>0} \to \mathbb{R}$ definida como $f(x) = \frac{8x-1}{x} e^x$.
 - (a) Dibujar la gráfica de f y determinar el número de raíces de la ecuación f(x) = 0, localizando cada raíz entre dos enteros consecutivos.

(b) Para cada una de las siguientes funciones:

$$f_1(x) = \frac{1}{8}(1 + xe^x), \quad f_2(x) = \ln\left(\frac{8x - 1}{x}\right)$$

consideramos el siguiente método iterativo: dado $x_0 = 1$ sea

$$x_{n+1} = f_i(x_n), n \in \mathbb{N}, (i = 1, 2).$$

Estudiar si estas sucesiones convergen hacia alguna de las raíces de f = 0.

- (c) Utilizando Matlab, estimar las raíces con estos dos métodos.
- 16. Sea g una función tal que g' es continua en [s,b], donde s es un punto fijo de g. Si además, se verifica que $0 \le g'(x) \le K < 1$ para todo $x \in [s,b]$, mostrar que la iteración, comenzando con $x_0 \in [s,b]$, converge decrecientemente a s.
- 17. Sea f una función C^1 en las condiciones del método N-R. Sea $g(x) = x \frac{f(x)}{f'(x)}$. Mostrar que el método N-R es un método de punto fijo.
- 18. Para f una función C^2 que tiene una raíz de orden 2 en r:
 - (a) Demostrar que el método N-R converge sólo linealmente a r (Sugerencia: Notar que en este caso la g del ejercicio anterior no está definida para x = r, redefinirla como g(r) = r, probar la diferenciabilidad de g y demostrar que $g'(r) \neq 0$).
 - (b) ¿Cuál es el orden de convergencia de la siguiente modificación?

$$x_{n+1} = x_n - 2\frac{f(x_n)}{f'(x_n)}$$

- 19. Sea $f(x) = 4x^3 3x + 1 = 0$. La ecuación f(x) = 0 tiene una raíz doble. Aproximarla calculando las 10 primeras iteraciones de los métodos N-R y N-R con la modificación del ejercicio 18, comenzando con los valores iniciales $x_1 = y_1 = 25$. Graficar simultáneamente las dos sucesiones obtenidas.
- 20. Recordar que una raíz múltiple de un polinomio f es una raíz simple del polinomio f/mcd(f,f'), donde mcd indica el máximo común divisor. Hacer un programa en Matlab que aplique el método N-R a f(x) y a f(x)/mcd(f,f') para hallar la raíz múltiple de

$$f(x) = (x-1)(x-2)^2.$$

Demostrar que, a pesar que la función f no está en las hipótesis del método N-R, éste converge (aunque no tan velozmente como cuando la raíz múltiple se halla como solución de f/mcd(f, f')).

21. Dada la función $f(x) = x + \frac{1}{x} - 2$, $f: \mathbb{R}_{>0} \to \mathbb{R}$, se construye el siguiente algoritmo para aproximar la raíz r = 1:

$$x_{n+1} = 2 - \frac{1}{x_n}$$

(a) Verificar que si $x_0 > 1$ entonces la sucesión $\{x_n\}$ es monótona decreciente y acotada inferiormente por 1. Concluir que $x_n \to 1$, aunque esta iteración no está en las hipótesis del teorema del punto fijo. ¿Qué hipótesis no se cumple?

- (b) Dar un algoritmo para aproximar la raíz de f que converja cuadráticamente.
- 22. Con las mismas hipótesis que en el ejercicio 9, probar que si $x_1 \in (a, x_0)$, la sucesión generada por el método de la secante a partir de x_0 y x_1 converge decrecientemente hacia a.
- 23. Se quiere resolver la ecuación f(x) = 0, donde $f(x) = e^x 2$. Calcular los 10 primeros términos de las sucesiones generadas por los métodos N-R y de la secante, comenzando con los valores iniciales $x_1 = 3$ para el primer método e $y_1 = 3$, $y_2 = 2.3$ para el segundo. Graficar simultáneamente las dos sucesiones obtenidas.