Elementos de Cálculo Numérico

Práctica N°5: Interpolación

1. Para cada uno de los conjuntos de datos dados, calcular el polinomio p(x) interpolador de grado menor o igual que 3, en la forma de Lagrange. Verificar utilizando el comando **polyfit** de Matlab. Graficar el polinomio interpolador, usando el comando **polyval**.

X	-1	0	2	3
У	-1	3	11	27
X	-1	0	1	2
	-3	1	1	3

- 2. Repetir el problema anterior, usando el método de coeficientes indeterminados.
- 3. Probar que el determinante de la matriz de Van del Monde es: $\prod_{n \geq i > j \geq 0} (x_i x_j).$
- 4. Sea $f:[0,5] \to \mathbb{R}$, $f(x)=2^x$. Sea P_n un polinomio de grado n que interpola a f en n+1 puntos distintos cualesquiera de dicho intervalo. Demostrar que para todo $x \in [0,5]$,

$$|P_n(x) - f(x)| \le \frac{32.5^{n+1}}{(n+1)!}$$

5. Sea f una función C^{∞} tal que para todo $k \in \mathbb{N}$ y para todo $x \in [a, b]$ se tiene:

$$|f^k(x)| \le C^k k!$$

Mostrar que, si $0 < C < \frac{1}{b-a}$ y P_n en un polinomio de grado n que interpola a f en n+1 puntos distintos, entonces P_n converge a f uniformemente, es decir, $||f-P_n||_{\infty} \to 0$ cuando n tiende a ∞ .

- 6. Sea $f: [-1,1] \to \mathbb{R}$, $f(x) = \frac{1}{a+x}$. Sean $(x_n)_{n\geq 0}$ una sucesión arbitraria de puntos en [-1,1] y $P_n(x)$ el polinomio que interpola a f(x) en x_0, x_1, \ldots, x_n . Demostrar que si a>3 entonces P_n converge a f uniformemente.
- 7. a) Construir las tablas de diferencias divididas para los datos del Ejercicio 1, y emplearlas para construir los polinomios interpoladores.
 - b) Agregar a las tablas de datos del Ejercicio 1 el punto $x=4,\ y=1.$ Aumentar las tablas de diferencias divididas y calcular los polinomios interpoladores.
- 8. Considerar la función $f(x) = \frac{1}{1+25x^2}$ en el intervalo [-1,1]. Graficar f junto con los polinomios que resultan de interpolar a f en los n+1 puntos equiespaciados $x_0 = -1, \ldots, x_i = x_0 + \frac{2i}{n}, \ldots, x_n = 1$; para n = 5, 10, 15. ¿Qué observa? Esta función se la conoce como la función de Runge.

- 9. Repetir el Ejercicio 8 para la función $f_1: [-1,1] \to \mathbb{R}, f_1(x) = |x|$ y para la función $f_2: [-1,1] \to \mathbb{R}, f_2(x) = \sin(\pi x).$
- 10. Encontrar una función del tipo $2^{ax^3+bx^2+cx+d}$ que interpole la siguiente tabla de datos:

\boldsymbol{x}	-1	0	1	2
y	1	1	0.5	4

- 11. Utilizando Matlab, encontrar y graficar una función del tipo $e^{a_4x^4+a_3x^3+\cdots+a_0}$ que interpole a la función f(x)=1/x en 5 nodos equiespaciados en el intervalo [1, 10].
- 12. a) Dado el intervalo [a, b], sea m el punto medio entre a y b y sea $h \le (b a)/2$. Sea p = m h y q = m + h. Demostrar que para todo x en [a, b],

$$|(x-p)(x-q)| \le \frac{(b-a)^2}{4}.$$

b) Sean $x_0 = a, \ldots, x_i = x_0 + i \frac{b-a}{n}, \ldots, x_n = b, n+1$ puntos equiespaciados en el intervalo [a, b]. Demostrar que para todo x en [a, b],

$$|(x-x_0)\dots(x-x_n)| \le \frac{(b-a)^{n+1}}{2^{n+1}}.$$

- 13. Sea $f: [-\pi, \pi] \to \mathbb{R}$, $f(x) = \sin(x)$. Sea P_n un polinomio de grado n que interpola a f en n+1 puntos equiespaciados en dicho intervalo.
 - a) Demostrar que para todo $x \in [-\pi, \pi]$

$$|P_n(x) - f(x)| \le \frac{\pi^{n+1}}{(n+1)!}$$

- b) Concluir que P_n converge uniformemente a f.
- 14. Sea $f:[0,1] \to \mathbb{R}$, $f(x) = \sin(\pi x) + e^x$. Sea P_n el polinomio de grado n que interpola a f en n+1 puntos equiespaciados.
 - a) Usando el ejercicio 12, acotar el error $||f P_n||_{\infty}$.
 - b) Sea C_n la cota hallada en (a). Para n=1,3,5, graficar simultáneamente $f, f+C_n, f-C_n$ y P_n .
- 15. Dado un intervalo [a, b], decidir como tienen que estar distribuidos n + 1 nodos $x_0 < x_1 < \ldots < x_n$ en el intervalo de modo que exista $x \in [a, b]$ tal que

$$|(x-x_0)\dots(x-x_n)| \sim (b-a)^{n+1}$$

- 16. a) Hallar n de modo que el polinomio P_n que interpola a la función $f(x) = e^{2x}$ en los ceros de T_{n+1} verifique que $||f P_n||_{\infty} \le 10^{-2}$ en [-1, 1].
 - b) Repetir el ítem anterior para $f(x) = e^x$, $x \in [0, 4]$.
- 17. Para n = 5, 10, 15; graficar simultáneamente el polinomio $W_{n+1}(x) = \prod_{i=0}^{n} (x x_i)$, donde $x_i = -1 + 2i/n$; $i = 0, \ldots, n$ y el polinomio de Tchebychev T_{n+1} .
- 18. Repetir los Ejercicios 8 y 9 usando los polinomios que interpolan a la función f en los ceros del polinomio de Tchebychev de grado n+1, para n=5,10,15. ¿Qué diferencias observa respecto a los resultados en 8?

19. Utilizar el método de coeficientes indeterminados para hallar un polinomio p de grado 2 que satisfaga:

$$p(1) = 0$$
, $p'(1) = 7$, $p(2) = 10$.

- 20. Para ilustrar qué pasa cuando se desea interpolar no sólo una función sino también sus derivadas, consideramos el problema de hallar p de grado a lo sumo 3 que verifique:
 - (a) p(0) = 1, p'(0) = 1, p'(1) = 2, p(2) = 1;
 - (b) p(-1) = 1, p'(-1) = 1, p'(1) = 2, p(2) = 1;
 - (c) p(-1) = 1, p'(-1) = -6, p'(1) = 2, p(2) = 1.

Usando el método de coeficientes indeterminados, demostrar que el problema (a) tiene solución única, el problema (b) no tiene solución, y el problema (c) tiene infinitas soluciones.

21. Analizar para qué valores de $x_0, x_1, x_2, y \alpha_0, \alpha_1, \alpha_2$ existe un polinomio de grado 2 que satisface:

$$p(x_0) = \alpha_0, \ p(x_1) = \alpha_1, \ p'(x_2) = \alpha_2.$$

y cuándo este polinomio es único.

- 22. a) Sea $f(x) = \cos(\pi x)$, hallar un polinomio de grado menor o igual que 3 que verifique p(-1) = f(-1), p(0) = f(0), p(1) = f(1), p'(1) = f'(1).
 - b) Hallar un polinomio de grado menor o igual que 4 que verifique las condiciones del item anterior, más la condición

$$p''(1) = f''(1).$$

- 23. Sea $f: [-1,1] \to \mathbb{R}$ la función $f(x) = e^{2x-1}$ y sean $x_0 < x_1 < \ldots < x_n$ los ceros del polinomio de Tchebychev, T_{n+1} . Se interpola a f con un polinomio P de grado $\leq n+1$ de modo que $P(x_0) = f(x_0)$, $P(x_1) = f(x_1), \ldots, P(x_n) = f(x_n)$ y además $P'(x_n) = f'(x_n)$. Probar que si $n \geq 6$ entonces, el error cometido en la interpolación sobre el intervalo [-1,1] es menor que 10^{-3} .
- 24. Sea $f:[0,1] \to \mathbb{R}$ con $f(x) = e^{\frac{2x}{3}}$. Dados los nodos $x_0 < x_1 < ... < x_n$ en [0,1], se quiere interpolar f con un polinomio de grado menor o igual a n+2 que cumpla que $P(x_i) = f(x_i)$ para todo $0 \le i \le n$ y, además, $P'(x_0) = f'(x_0)$ y $P'(x_n) = f'(x_n)$.
 - a) Dar una cota para el error de interpolación |f(x) P(x)|.
 - b) Para n=4, probar que si los nodos son equiespaciados se tiene que

$$||f - P||_{\infty} \le e^{\frac{2}{3}} \frac{1}{3^7 \, 7!}.$$

c) Si n=4 y se sabe que la acotación para el error es,

$$||f - P||_{\infty} \le e^{\frac{2}{3}} \frac{1}{3^7 \cdot 7!} \frac{1}{2^2}.$$

¿Cómo fueron elegidos los nodos? Justificar.

25. Sea $f \in C^2[a, b]$, y sean $x_0 = a, x_1 = a + h, \dots, x_n = b$, donde h = (b - a)/n. Considerar la poligonal l(x) que interpola a f en los puntos x_i , $i = 0 \dots n$.

3

a) Probar que

$$|f(x) - l(x)| \le \frac{h^2}{2} \max_{x \in [a,b]} |f''(x)|.$$

b) Para los $x \in [a, b]$ tales que l es derivable, probar que

$$|f'(x) - l'(x)| \le h \max_{x \in [a,b]} |f''(x)|.$$