Práctica 2

- **1.** Sea V un \mathbb{R} -espacio vectorial de dimensión $n \geq 1$ y $B = \{v_1, \ldots, v_n\}$ una base. Sea $x: V \longrightarrow \mathbb{R}^n$ definida por $x(\sum_{i=1}^n a^i.v_i) = (a^1, \ldots, a^n)$; i.e., si $x = (x^1, \ldots, x^n)$ entonces $\{x^1, \ldots, x^n\}$ es la base dual de B. Consideremos sobre V la única topología que hace de x un homeomorfismo.
 - a) Verificar que dicha topología no depende de B.
 - **b)** Sea \mathcal{D} la estructura diferenciable generada por el atlas (V, x). Probar que \mathcal{D} no depende de B.

Nombre: \mathcal{D} se denomina estructura diferenciable usual para V.

- 2. Sea M una variedad diferenciable de dimensión m y $A \subset M$ un abierto no vacío.
 - a) Considerando en A la topología inducida por M, mostrar que A hereda —de manera natural— una estructura diferenciable que hace de A una variedad diferenciable de dimensión m.
 - b) Deducir de los ejercicios anteriores que $GL(n,\mathbb{R}) \subset \mathbb{R}^{n\times n}$ resulta –de manera natural– una variedad diferenciable de dimensión n^2 .
- **3.** Sea Q una cuádrica sin puntos singulares. Verificar que Q es una subvariedad de dimensión n-1.
- **4.** Sea $M \subset \mathbb{R}^n$ una subvariedad de dimensión m y sea \mathcal{D} su estructura diferenciable. Si \mathcal{D}' es una estructura diferenciable que hace de M una subvariedad de dimensión m de \mathbb{R}^n , probar que $\mathcal{D} = \mathcal{D}'$.

Sug.: utilizar la carta dada por la definición de subvariedad.

- **5.** Sea $M \subset \mathbb{R}^n$ una subvariedad.
 - a) Probar que la topología de M coincide con la inducida por \mathbb{R}^n .
 - **b)** Si dim(M) = n, mostrar que M es abierto y que la estructura diferenciable coincide con la heredada de \mathbb{R}^n .

Sug.: ejercicio 2a).

- **6.** Sea M una variedad diferenciable de dimensión n y \mathcal{D} su estructura diferenciable.
 - a) Sean $V \subset M$ y $A \subset \mathbb{R}^n$ abiertos no vacíos e $y : V \longrightarrow A$ un homeomorfismo. Suponiendo que para cada $p \in V$ existe una carta $(U, x) \in \mathcal{D}$ alrededor de p tal que $x \circ y^{-1} : y(U \cap V) \longrightarrow x(U \cap V)$ es un difeomorfismo, probar que $(V, y) \in \mathcal{D}$.

b) Sean $(U, x) \in \mathcal{D}$, $A \subset \mathbb{R}^n$ abierto e $y : U \longrightarrow A$ una biyección tal que las funciones

$$y \circ x^{-1} : x(U) \longrightarrow A$$
 $y \quad x \circ y^{-1} : A \longrightarrow x(U)$

son diferenciables. Deducir de a) que $(U, y) \in \mathcal{D}$.

- c) Dado $p \in M$,
 - (i) probar que existe $(U, x) \in \mathcal{D}$ con x(p) = 0.
 - (ii) sea B(0,r) la bola abierta de \mathbb{R}^n con centro en el origen y radio r > 0. Construir $(U,x) \in \mathcal{D}$ tal que x(p) = 0 y x(U) = B(0,r).
 - (iii) construir una carta $(U, x) \in \mathcal{D}$ con x(p) = 0 y $x(U) = \mathbb{R}^n$. Sug.: considerar la función $f : B(0, 1) \longrightarrow \mathbb{R}^n$ definida por $f(u) = \frac{u}{1 - \|u\|^2}$, donde $\| \|$ denota la norma euclídea de \mathbb{R}^n .
- 7. Sea M una subvariedad de dimensión m de \mathbb{R}^n , $A \subset \mathbb{R}^m$ un abierto no vacío y $f = (f^1, \ldots, f^n) : A \longrightarrow \mathbb{R}^n$ diferenciable, que satisface las siguientes propiedades:
 - 1. Existe un abierto Ω de \mathbb{R}^n tal que $f(A) = \Omega \cap M$.
 - 2. $f: A \longrightarrow \Omega \cap M$ es homeomorfismo, siendo la topología de $\Omega \cap M$ la inducida por \mathbb{R}^n o, equivalentemente, la de M.
 - 3. Para todo $u \in A$ es $\operatorname{rg}(D_i f^i|_u) = m$, $1 \leq i \leq m$, $1 \leq i \leq n$.

Probar que $(\Omega \cap M, f^{-1})$ es una carta admisible.

Sug.: para cada $p \in V$, considerar la carta (U, x) con $p \in U$ inducida por cartas usuales (W, φ) de \mathbb{R}^n adaptadas a M y aplicar el ejercicio 6a).

- 8. Sean M , N variedades diferenciables y $f:M\longrightarrow N$ una función diferenciable. Probar:
 - a) El concepto de diferenciabilidad de una función f no depende de las cartas (U, x) y (V, y) que satisfacen $f(U) \subset V$.
 - **b)** f es contínua.
 - c) Si A es un abierto no vacío de M con la estructura diferenciable heredada de M, entonces la inclusión $i:A\longrightarrow M$ es diferenciable.
 - **d)** Si Q es otra variedad diferenciable y $g:N\longrightarrow Q$ es diferenciable, entonces $g\circ f:M\longrightarrow Q$ también lo es.
 - e) Si A es un abierto no vacío de M, la restricción de f a A es diferenciable.
- 9. Construir una variedad diferenciable M de dimensión 2 contenida en \mathbb{R}^3 tal que la inclusión $i: M \longrightarrow \mathbb{R}^3$ sea contínua pero no diferenciable.
- 10. Sea M una variedad diferenciable de dimensión n y $U \subset M$ un abierto no vacío. Verificar:
 - a) $f \in \mathfrak{F}(M) \implies f|_{U} \in \mathfrak{F}(U)$

- **b)** $f, g \in \mathcal{F}(U) \implies f.g \in \mathcal{F}(U)$
- c) $\mathcal{F}(U)$ -con las operaciones naturales- es un \mathbb{R} -espacio vectorial
- d) $x^i \in \mathcal{F}(M)$ para toda carta (U, x), siendo $x = (x^1, \dots, x^n)$.
- 11. Sea M una variedad diferenciable de dimensión n y (U,x) una carta de M. Considerando a U y x(U) como variedades diferenciables con las estructuras inducidas por M y \mathbb{R}^n respectivamente, verificar que $x:U\longrightarrow x(U)$ es un difeomorfismo.
- **12.** Sea $f = (f^1, ..., f^k) : \mathbb{R}^n \longrightarrow \mathbb{R}^k$, n > k, una función diferenciable y $b \in f(\mathbb{R}^n)$ un valor regular. Sea $M = f^{-1}(b)$ dotada de la única estructura diferenciable que la hace una subvariedad de \mathbb{R}^n de dimensión n k. Verificar que

$$T_pM = \{u \in \mathbb{R}^n / < \operatorname{grad}(f^j)|_p, u >= 0, 1 \leqslant j \leqslant k\}$$

- 13. Sea M una variedad diferenciable de dimensión n y sean $p, q \in M$ puntos distintos. Verificar que $M_p \cap M_q = \emptyset$.
- **14.** Sea M una variedad diferenciable de dimensión $n, p \in M$ y $\{v_1, \ldots, v_n\}$ una base de M_p . Construir una carta (U, x) de M alrededor de p tal que $\frac{\partial}{\partial x^i}|_p = v_i$ para todo $i = 1, \ldots, n$.

Sug.: ejercicio 6c).

15. Sea V un \mathbb{R} -espacio vectorial de dimensión n y $B = \{v_1, \ldots, v_n\}$ una base. Considerando a V como una variedad diferenciable con la estructura usual (cf. ejercicio 1), sea (V, x) la carta inducida por B. Para $u \in V$, se define el isomorfismo $J_u : V \longrightarrow V_u$ por

$$J_u\left(\sum_{i=1}^n a^i v_i\right) = \sum_{i=1}^n a^i \frac{\partial}{\partial x^i} \bigg|_{u}$$

Mostrar que J_u no depende de la base B; i.e., es canónico.

16. FIBRADO TANGENTE

Sea M una variedad diferenciable de dimensión n y \mathcal{D} su atlas maximal. Sea $TM = \bigcup_{p \in M} M_p$, i.e., la unión de todos los espacios tangentes. Sea $\pi : TM \longrightarrow M$ definida por $\pi(v) = p$ si $v \in M_p$.

Para cada $(U,x)\in \mathcal{D}$, sea $TU=\bigcup_{p\in U}M_p\subset TM$ y $\bar{x}:TU\longrightarrow x(U)\times \mathbb{R}^n$ la aplicación definida por

$$\bar{x}(v) = (x(\pi(v)), v(x^1), \dots, v(x^n))$$

o, equivalentemente,

$$\bar{x}\left(\sum_{i=1}^n v(x^i) \frac{\partial}{\partial x^i} \bigg|_p\right) = (x^1(p), \dots, x^n(p), v(x^1), \dots, v(x^n))$$

para cada $p \in U$ y $v \in M_p$.

Denotando con $\bar{x}=(\bar{x}^1,\ldots,\bar{x}^n,\bar{x}^{n+1},\ldots,\bar{x}^{2n}),$ será

$$\bar{x}^i(v) = x^i(\pi(v)) = x^i \circ \pi(v)$$
 y $\bar{x}^{n+i}(v) = v(x^i)$

para $1 \leq i \leq n$. Verificar:

- a) $\bar{x}: TU \longrightarrow x(U) \times \mathbb{R}^n$ es una biyección con inversa $\bar{x}^{-1}: x(U) \times \mathbb{R}^n \longrightarrow TU$ definida por $\bar{x}^{-1}(a, b^1, \dots, b^n) = \sum_{i=1}^n b^i \frac{\partial}{\partial x^i} \Big|_{x^{-1}(a)}$ para cada $a \in x(U)$.
- **b)** Si $(V, y) \in \mathcal{D}$ y $U \cap V \neq \emptyset$, entonces $\bar{x}(TU \cap TV) = x(U \cap V) \times \mathbb{R}^n$ es un abierto de \mathbb{R}^{2n} .
- c) En la situación de b), la biyección $\bar{x} \circ \bar{y}^{-1} : y(U \cap V) \times \mathbb{R}^n \longrightarrow x(U \cap V) \times \mathbb{R}^n$ está dada por

$$\bar{x} \circ \bar{y}^{-1}(a,b) = \left(x \circ y^{-1}(a) , \sum_{i=1}^{n} b^{i} \frac{\partial (x^{1} \circ y^{-1})}{\partial u^{i}} \Big|_{a}, \dots, \sum_{i=1}^{n} b^{i} \frac{\partial (x^{n} \circ y^{-1})}{\partial u^{i}} \Big|_{a} \right)$$

Concluir que es diferenciable.

- d) Utilizando el criterio para construir variedades diferenciables, deducir que TM admite una estructura diferenciable que lo transforma en una variedad diferenciable de dimensión 2n para la cual las cartas (TU, \bar{x}) resultan admisibles.
- e) Con dicha estructura diferenciable, la proyección $\pi:TM\longrightarrow M$ resulta diferenciable.
- 17. Sea M una variedad diferenciable de dimensión n y $f \in \mathcal{F}(M)$. Probar que la aplicación $df:TM \longrightarrow \mathbb{R}$ es diferenciable.
- **18.** Sea M una variedad diferenciable de dimensión n y (U,x) una carta de M. Dado $p \in U$, sea a = x(p). Probar que $(x^{-1})_{*a} : \mathbb{R}^n_a \longrightarrow M_p$ satisface $(x^{-1})_{*a}(D_i|_a) = \frac{\partial}{\partial x^i}\Big|_p$ para todo $1 \leq i \leq n$.
- 19. Sean M, N varidades diferenciables y $f: M \longrightarrow N$. Probar que:
 - a) si f es constante, entonces $f_{*p} = 0$ para todo $p \in M$
 - b) si M es conexa y $f_{*p} = 0$ para todo $p \in M$, entonces f es constante.
- **20.** Calcular f_{*p} para
 - a) $f: M \times N \longrightarrow M$, $f = \pi_1$
 - **b)** $f: M \times N \longrightarrow N$, $f = \pi_2$
 - c) $f: S^n \longrightarrow S_n^n$, $f(u) = \rho.u$
 - d) $f: E \longrightarrow F$, transformación lineal entre espacios vectoriales de dimensión finita.
- 21. Considerando a cada una de las variedades con la estructura diferenciable anteriormente definida sobre ella, probar que las inclusiones siguientes son diferenciables:

- a) $i: S^2 \longrightarrow \mathbb{R}^3$
- b) $i: S \longrightarrow E$, S subespacio del espacio vectorial E
- c) $i: A \longrightarrow M, M$ varied ad differenciable, $A \subset M$ abierto
- **d)** $i: GL(n, \mathbb{R}) \longrightarrow \mathbb{R}^{n \times n}$
- e) $i: M_p \longrightarrow TM$, M varied ad diferenciable, $p \in M$

Analizar en cada caso si son, o no, inmersiones y sumersiones.

- **22.** Probar que todo difeomorfismo $f: M \longrightarrow N$ es sumersión.
- **23.** Sea $c:(-1,1)\longrightarrow \mathbb{R}^2$ dada por $c(t)=(t^2,t^3)$. Mostrar que
 - a) c es invectiva
 - **b)** c es diferenciable, $\dot{c}(0) = 0$
 - c) considerando a M = c(-1, 1) con la estructura diferenciable generada por (M, c^{-1}) ,
 - (i) $i: M \longrightarrow i(M)$ es homeomorfismo diferenciable
 - (ii) M no es una subvariedad inmersa de \mathbb{R}^2 .
- **24.** Sea $f: U \subset \mathbb{R}^2 \longrightarrow \mathbb{R}$, U abierto, una función diferenciable. Probar que su gráfico: $G_f = \{(x, y, f(x, y)) / (x, y) \in U\}$ es una superficie.
- **25.** Sean $S \subset \mathbb{R}^3$ uan superficie y $p \in S$. Probar que existe un entorno V de p en S tal que V es el gráfico de una función diferenciable que tiene una de las tres formas:

$$z = f(x, y)$$
 $y = q(x, z)$ $x = h(y, z)$

- **26.** Sea $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ definida por $f(x,y) = (x^2 2y, 4x^3y^2)$ y sea $g: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ dada por $g(u,v) = (u^2v + v^2, u 2v^3, ve^u)$. Hallar la matriz de $f_{*(1,2)}$ y de $g_{*(u,v)}$ y calcular $g_{*(0,1)} \left(4 \frac{\partial}{\partial u} \big|_{(0,1)} \frac{\partial}{\partial v} \big|_{(0,1)} \right)$.
- 27. a) Probar que toda variedad diferenciable es localmente conexa por arcos y que sus componentes conexas son abiertas.
 - b) Probar que toda variedad diferenciable de dimensión n es localmente compacta.
- **28.** Probar que $SL(n,\mathbb{R}) = \{A \in \mathbb{R}^{n \times n} / \det(A) = 1\}$ es una variedad diferenciable de dimensión $n^2 1$.

Calcular $SL(n,\mathbb{R})_I$, donde I es la matriz identidad.

29. a) Sean X, Y subvariedades de \mathbb{R}^n tales que $X \subset Y$. Probar que X es subvariedad de Y y que para todo $p \in X$ vale:

$$p + T_p X \subset p + T_p Y$$

b) Deducir que los conjuntos

$$M: x_1^2 - x_2^2 = 0$$
 y $M': x_1^2 + x_2^2 - x_3^2 = 0$

no pueden ser subvariedades de \mathbb{R}^3 .

- **30.** a) Probar que no existe estructura diferenciable sobre la lemniscata que la haga subvariedad de \mathbb{R}^2 .
 - b) Idem para $M = \mathcal{L} \times (0,1) \subset \mathbb{R}^3$, donde \mathcal{L} es una lemniscata contenida en el plano xy.
- **31.** Sea M una variedad diferenciable de dimesión n. Sean $\pi:TM\longrightarrow M$ la proyección natural y $v\in TM$. Calcular $\pi_{*v}(\frac{\partial}{\partial \bar{x}^i}|_v)$, siendo (TU,\bar{x}) la carta de v asociada a la carta (U,x) de $\pi(v)$.
- **32.** Sean M, N variedades diferenciables de dimensiones m y n respectivamente, i_q , j_p la inyecciones en $M \times N$ y π_1 , π_2 las proyecciones desde $M \times N$. Calcular:

$$i_{q*p}\left(\frac{\partial}{\partial x^k}\bigg|_p\right) \quad , \quad j_{p*q}\left(\frac{\partial}{\partial y^\ell}\bigg|_q\right) \quad , \quad \pi_{1*(p,q)}\left(\frac{\partial}{\partial z^j}\bigg|_{(p,q)}\right) \quad , \quad \pi_{2*(p,q)}\left(\frac{\partial}{\partial z^j}\bigg|_{(p,q)}\right)$$

siendo (U,x) una carta en M alrededor de p y (V,y) una carta en N alrededor de q , $(U\times V,z)$ la carta de $M\times N$ alrededor de (p,q) generada por las anteriores y $1\leqslant k\leqslant m$, $1\leqslant \ell\leqslant n$, $1\leqslant j\leqslant m+n$.

- **33.** Sea M una variedad diferenciable y (V, y) una carta en M tal que $y(V) = \mathbb{R}^n$. Sea $\phi : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ un isomorfismo y sea $x = \phi \circ y$. Probar que (V, x) es una carta en M y calcular las componentes de $\frac{\partial}{\partial x^i}|_p$ respecto de la base $\{\frac{\partial}{\partial y^j}|_p\}$.
- **34.** Sea $U \subset \mathbb{R}^n$ abierto y $f: U \longrightarrow \mathbb{R}^m$ diferenciable (en el sentido tradicional).

Probar que también es diferenciable como aplicación entre variedades, si se considera a U y a \mathbb{R}^n con las estructuras diferenciables usuales.

Analizar la relación entre Df(a) y f_{*a} para cada $a \in U$.

35. Sean M , N y P variedades diferenciables y $\phi: M \times N \longrightarrow P$ una función diferenciable. Se definen:

$$\phi_p : N \longrightarrow P$$
 por $\phi_p(q) = \phi(p, q)$
 $\phi_q : M \longrightarrow P$ por $\phi_q(p) = \phi(p, q)$

Calcular $\phi_{*(p,q)}$ en términos de ϕ_{p*q} y de ϕ_{q*p} .

- **36.** Sea M una variedad compacta de dimensión n y sea $f: M \longrightarrow \mathbb{R}^n$ diferenciable. Probar que f no puede ser no singular en todo punto.
- **37.** Probar que una función diferenciable $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ no puede ser inyectiva. ¿Y si sólo fuese contínua?

- **38.** Sea M una subvariedad de dimensión m de \mathbb{R}^n e $i:M\longrightarrow\mathbb{R}^n$ la inclusión. Dada una carta (U,x) de M, sea $f:x(U)\longrightarrow\mathbb{R}^n$ definida por $i\circ x^{-1}(u)$. Probar:
 - a) Existe un abierto Ω de \mathbb{R}^n tal que $U=\Omega\cap M$ y $f:x(U)\longrightarrow \Omega\cap M$ es una biyección
 - **b)** $f: x(U) \longrightarrow \Omega M$ es un homeomorfismo
 - \mathbf{c}) f es diferenciable
 - **d)** $\operatorname{rg}(\frac{\partial f^i}{\partial u^j}|_a) = m$ para todo $a \in x(U)$, $1 \leq i \leq n$, $1 \leq j \leq m$.

Sug.: utilizar el hecho que M tiene la topología inducida, que i es diferenciable y que $i_{*p}: M_p \longrightarrow \mathbb{R}_p^n$ es un monomorfismo para todo $p \in M$.

39. Sea M una subvariedad de dimensión m de \mathbb{R}^n y $f:A\longrightarrow \mathbb{R}^n$ una parametrización de M. Mostrar que $df_a(\mathbb{R}^m)=T_{f(a)}M$.