Práctica 6

1. Sea M una variedad diferenciable y $c:[a,b] \longrightarrow M$ una curva. Probar que existe una partición $\{a=t_0,t_1,\ldots,t_{n-1},t_n=b\}$ de [a,b] tal que $c(t_i,t_{i+1})$ está contenido en dominio de alguna carta de M para todo $i=0,\ldots,n$.

Generalizar al caso en que el dominio de la curva es cualquier intervalo de R.

2. Sean M y N variedades orientables de dimensión n y $f: M \longrightarrow N$ un difeomorfismo que preserva la orientación. Suponiendo que $\omega \in \Omega^n(N)$ tiene soporte compacto, probar que entonces $f^*\omega$ también tiene soporte compacto y vale:

$$\int \omega = \int f^* \omega$$

- **3.** Sean M y N variedades diferenciables, $f: N \longrightarrow M$ una aplicación diferenciable y $X: N \longrightarrow TM$ una función que satisface $X(p) \in M_{f(p)}$ para todo $p \in N$. Probar que son equivalentes las siguientes afirmaciones:
 - a) $X \in \mathfrak{X}_f$
 - **b)** Para toda $g \in \mathcal{F}(M)$, la función $Xg : N \longrightarrow \mathbb{R}$ definida por Xg(p) = X(p)g es diferenciable.
- **4.** Sea M paralelizable de dimensión n y $X_1, \ldots, X_n \in \mathfrak{X}(M)$ linealmente independientes. Se define:

$$\nabla: \mathfrak{X}(M) \times \mathfrak{X}(M) \longrightarrow \mathfrak{X}(M)$$

por

$$\nabla_X Y = \sum_{i=1}^n X(\varphi^i) X_i$$

donde $X, Y \in \mathfrak{X}(M)$ e $Y = \sum_{i=1}^{n} \varphi^{i} X_{i}$. Probar:

- a) ∇ es una conexión sobre M
- **b)** $\nabla_X X_j = 0 \text{ si } 1 \leqslant j \leqslant n \text{ y } X \in \mathfrak{X}(M)$
- c) $\mathbf{T}(X_i, X_j) = -[X_i, X_j]$ y $\mathbf{R} \equiv 0$

Nota: ∇ se llama conexión asociada a los campos X_1, \ldots, X_n .

5. Sea G un grupo de Lie de dimensión n y $X_1, \ldots, X_n \in \mathcal{L}(G)$ linealmente independientes. Sea ∇ la conexión asociada a X_1, \ldots, X_n . Probar que ∇ no depende de la elección de los n campos linealmente independientes e invariantes a izquierda.

Nota: ∇ se llama la conexión canónica de G.

- **6.** Verificar que en el caso del grupo de Lie $(\mathbb{R}^n, +)$, la conexión canónica es la usual de \mathbb{R}^n . Mostrar que $\mathbf{T} \equiv 0$.
- 7. Sea M una variedad diferenciable de dimensión $n \vee \nabla$ una conexión sobre M. Probar:
 - a) Si $\bar{\nabla}$ es otra conexión sobre M, entonces $\nabla \bar{\nabla} : \mathfrak{X}(M) \times \mathfrak{X}(M) \longrightarrow \mathfrak{X}(M)$ es un campo tensorial.
 - **b)** Si $S: \mathfrak{X}(M) \times \mathfrak{X}(M) \longrightarrow \mathfrak{X}(M)$ es un campo tensorial, entonces $\nabla + S$ es una conexión sobre M.
 - c) Si $S: \mathfrak{X}(M) \times \mathfrak{X}(M) \longrightarrow \mathfrak{X}(M)$ es un campo tensorial simétrico, entonces ∇ y $\nabla + S$ tienen el mismo tensor de torsión.
- **8.** Si $X, Y \in \mathcal{X}(\mathbb{R}^3)$, $X = \sum_{i=1}^3 \psi^i D_i$ e $Y = \sum_{i=1}^3 \varphi^i D_i$, se define su **producto vectorial** $X \times Y \in \mathcal{X}(\mathbb{R}^3)$ por:

$$\begin{array}{lll} X \times Y & = & \det \begin{pmatrix} D_1 & D_2 & D_3 \\ \psi^1 & \psi^2 & \psi^3 \\ \varphi^1 & \varphi^2 & \varphi^3 \end{pmatrix} \\ & = & (\psi^2 \varphi^3 - \psi^3 \varphi^2) D_1 \, + \, (\psi^3 \varphi^1 - \psi^1 \varphi^3) D_2 \, + \, (\psi^1 \varphi^2 - \psi^2 \varphi^1) D_3 \end{array}$$

donde det es sólo formal.

- a) Probar que $S: \mathfrak{X}(\mathbb{R}^3) \times \mathfrak{X}(\mathbb{R}^3) \longrightarrow \mathfrak{X}(\mathbb{R}^3)$ definido por $S(X,Y) = X \times Y$ es un tensor antisimétrico.
- b) Sea ∇ la conexión usual de \mathbb{R}^3 , deducir del ejercicio anterior que $\overline{\nabla} = \nabla + \frac{1}{2}S$ es una conexión sobre \mathbb{R}^3 .
- c) Verificar que el tensor de torsión para $\overline{\nabla}$ es : $\overline{\mathbf{T}}(X,Y) = X \times Y$ y que el tensor de curvatura para $\overline{\nabla}$ es $\overline{\mathbf{R}}(X,Y)Z = \frac{1}{4}(X \times Y) \times Z$.
- 9. Sea M una variedad diferenciable de dimensión n, ∇ una conexión sobre M. Si $\mathbf{T} \equiv 0$, probar:
 - a) Primera Identidad de Bianchi

$$\mathbf{R}(X,Y)Z + \mathbf{R}(Y,Z)X + \mathbf{R}(Z,X)Y \ = \ 0$$
 para $X,Y,Z \in \mathfrak{X}(M)$

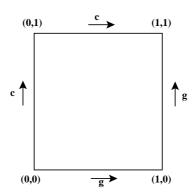
b) Segunda Identidad de Bianchi

$$(\nabla_X \mathbf{R})(Y,Z,U) + (\nabla_Y \mathbf{R})(Z,X,U) + (\nabla_Z \mathbf{R})(X,Y,U) = 0$$
 para $X,Y,Z,U \in \mathfrak{X}(M)$

10. Sea M una varidad diferenciable de dimensión n, con conexión ∇ y función de conexión $\mathbf{K}: TTM \longrightarrow TM$. Sea N una variedad diferenciable, $f: N \longrightarrow M$ una aplicación diferenciable e $Y \in \mathcal{X}(M)$. Utilizando la definición de \mathbf{K} verificar:

- a) Si $v \in N_p$, entonces: $\nabla_{f_{*p}(v)} Y = \nabla_v (Y \circ f)$
- **b)** Si $A \in \mathcal{X}(N)$ y $X \in \mathcal{X}(M)$ están f-relacionados; es decir, $f_*A = X \circ f$, entonces $(\nabla_X Y) \circ f = \nabla_A (Y \circ f)$.
- **11.** Sea M una variedad diferenciable de dimensión n, con conexión ∇ , $c: I \longrightarrow M$ una curva y $\mathfrak{X}_c^{/\!/} \subset \mathfrak{X}_c$ el subespacio de los campos de vectores paralelos a lo largo de c. Si $t_0 \in I$, v_1, \ldots, v_n es base de $M_{c(t_0)}$, sean $X_1, \ldots, X_n \in \mathfrak{X}_c^{/\!/}$ tales que $X_i(t_0) = v_i$, $1 \leq i \leq n$.
 - a) Probar que $X_1(t), \ldots, X_n(t)$ son linealmente independientes en $M_{c(t)}$ para todo $t \in I$
 - **b)** Sea $Y \in \mathfrak{X}_c^{/\!\!/}$ tal que $Y(t_0) = \sum_{i=1}^n a^i v_i$. Probar que si $t \in I$, entonces $Y(t) = \sum_{i=1}^n a^i X_i(t)$
 - c) Deducir de a) y b) que $\mathfrak{X}_c^{\#}$ tiene dimensión $n = \dim(M)$.
- 12. Sean $D_1, D_2 \in \mathcal{X}(\mathbb{R}^2)$ la base de campos de vectores inducidos por $(\mathbb{R}^2, \mathrm{id})$ y ∇ la conexión definida por: $\nabla_{D_i} D_j = \sum_{k=1}^2 \Gamma_{ij}^k D_k$, con $\Gamma_{11}^1 = \Gamma_{12}^1 = \Gamma_{21}^1 = \Gamma_{11}^2 = \Gamma_{22}^2 = 0$, $\Gamma_{12}^2 = \Gamma_{21}^2 = 1$ y $\Gamma_{22}^1(u) = -e^{2u_1}$.
 - a) Si **R** es el tensor de curvatura asociado a ∇ , probar que $\mathbf{R}(D_1, D_2)D_2 = \Gamma_{22}^1 D_1$.
 - b) Sean $c, g: [0, 1] \longrightarrow \mathbb{R}^2$ las curvas diferenciables a trozos definidas por

$$c(t) = \begin{cases} (0,2t) & \text{si } 0 \leqslant t \leqslant \frac{1}{2} \\ (2t-1,1) & \text{si } \frac{1}{2} \leqslant t \leqslant 1 \end{cases} \qquad g(t) = \begin{cases} (0,2t) & \text{si } 0 \leqslant t \leqslant \frac{1}{2} \\ (1,2t-1) & \text{si } \frac{1}{2} \leqslant t \leqslant 1 \end{cases}$$



Mostrar que las traslaciones paralelas a lo largo de c y de g son diferentes.

- 13. Sea $c:I\longrightarrow \mathbb{R}^n$ una curva y $\varphi:J\longrightarrow I$ un difeomorfismo entre intervalos de \mathbb{R} . Probar:
 - $\mathbf{a)} \ \nabla_D(c \circ \varphi)|_t = \frac{d^2 \varphi}{dt^2}\Big|_t \ . \ \dot{c}(\varphi(t)) \ + \ \left(\frac{d\varphi}{dt}\Big|_t\right)^2 \ . \ \nabla_D \dot{c}|_{\varphi(t)}$
 - **b)** Deducir de a) que si $\dot{c}(0) \neq 0$ y c y $c \circ \varphi$ son geodésicas, entonces existen $\alpha, \beta \in \mathbb{R}, \alpha \neq 0$, tales que $\varphi(t) = \alpha t + \beta$.

14. Sea $\overline{\nabla}$ la conexión sobre \mathbb{R}^3 definida en el ejercicio 8. Si $c: I \longrightarrow \mathbb{R}^3$ es una curva y $X \in \mathfrak{X}_c$ con $X(t) = \sum_{i=1}^3 a^i(t) D_i|_{c(t)}$, probar:

a)
$$\overline{\nabla}_D X|_t = \frac{1}{2}\dot{c}(t) \times X(t) + \sum_{i=1}^3 \frac{da^i}{dt}\Big|_t D_i|_{c(t)}$$

- b) Las geodésicas de $\overline{\nabla}$ coindiden con las geodésicas de la conexión usual ∇ .
- **15.** Sea M una variedad diferenciable de dimensión n, con conexión ∇ y $X \in \mathcal{X}(M)$. Probar la equivalencia de las siguientes afirmaciones:
 - a) X es paralelo
 - **b)** Toda curva integral $c: I \longrightarrow M$ de X es una geodésica.
- **16.** Sea G un grupo de Lie de dimensión n y ∇ la conexión canónica de G. Probar:
 - a) Si $X \in \mathcal{L}(G)$, entonces $\nabla_X X = 0$
 - b) Si $X \in \mathcal{L}(G)$, toda curva integral de X es una geodésica
 - c) Si $c: I \longrightarrow G$ es una geodésica, existe $X \in \mathcal{L}(G)$ tal que c es curva integral de X
 - d) Si c es una geodésica que pasa por e =neutro de G, entonces $d = L_h \circ c$ es una geodésica que pasa por h
 - e) ∇ es completa, i.e., las geodésicas de G están definidas en todo \mathbb{R} .
- 17. Para $n \ge 1$, sea $I \in GL(n, \mathbb{R})$ la matriz identidad y ∇ la conexión canónica de $GL(n, \mathbb{R})$. Identificando a $GL(n, \mathbb{R})_I$ con $\mathbb{R}^{n \times n}$, probar que las geodésicas $c : \mathbb{R} \longrightarrow GL(n, \mathbb{R})$ correspondientes a ∇ que satisfacen c(0) = I y $\dot{c}(0) = A \in \mathbb{R}^{n \times n}$ son de la forma $c(t) = \sum_{k=0}^{\infty} \frac{(tA)^k}{k!}$.

Interpretar el caso n = 1.