Geometría Diferencial

Segundo cuatrimestre 2003 Parcial 2

- (1) Sea (M,g) una variedad riemanniana y (\tilde{M},\tilde{g}) una subvariedad $(\tilde{g}=i^*(g),\,i:\tilde{M}\to M$ la inclusión). Sea $X\in\mathfrak{X}_i$ $(X:\tilde{M}\to TM)$ es diferenciable y $\pi\circ X=i$). Demostrar que si se descompone X como $X=X^\perp+X^T$, donde $X^T(p)\in d_pi(T_p\tilde{M})$ y $X^\perp(p)\in (d_pi(T_p\tilde{M}))^\perp$, entonces X^\perp y X^T son diferenciables.
- (2) Sea (M, g, ∇) una variedad riemanniana con su conexión de Levi-Civita. Sea K la función de conexión y $N(v) = (d_v \pi \times K_v)^{-1}(0, v)$.
 - (a) Si (U, φ) es una carta de M y $(TU, \bar{\varphi})$ es la carta inducida en el fibrado tangente, hallar la expresión local de N. Concluir que es un campo diferenciable en TM.
 - (b) Si $\alpha: I \to TM$ es una curva integral de N y $c = \pi \circ \alpha$, probar que $\alpha \in \mathfrak{X}_c$ satisface que $\nabla_D \alpha = \alpha$.
 - (c) Si S es el campo geodésico y ||v|| = 1, ver que $S(v) \in d_p i(T_1 M)$, donde $T_1 M = \{w \in TM \mid ||w|| = 1\}$ es el fibrado unitario tangente.
- (3) Se considera en \mathbb{R}^3 la métrica dada por $g_{ij} = \delta_{ij}\epsilon_i$, con $(\epsilon_1, \epsilon_2, \epsilon_3) = (1, 1, -1)$ (notar que no es definida positiva). Para los espacios tangentes a \mathbb{R}^3 se considera la misma métrica, vía la identificación natural. Sea $H = \{\mathbf{x} \in \mathbb{R}^3 \mid ||\mathbf{x}||^2 = -1\}, i : H \to \mathbb{R}^3$ la inclusión.
 - (a) Probar que si $\mathbf{x} \in H$, $d_{\mathbf{x}}i(T_{\mathbf{x}}H) = \mathbf{x}^{\perp} = \{\mathbf{y} \in \mathbb{R}^3 \mid \langle \mathbf{y}, \mathbf{x} \rangle = 0\}$ (usando la métrica g_{ij}).
 - (b) Probar que la métrica $\tilde{g} = i^*(g)$ es definida positiva.
 - (c) Probar que si M es una variedad riemanniana, c una geodésica en M y $f: M \to M$ un difeomorfismo que respeta la métrica, entonces $f \circ c$ es una geodésica. Sea $\mathbf{x} = c(0)$, $\mathbf{y} = \dot{c}(0)$. Probar que si $f(\mathbf{x}) = \mathbf{x}$ y $d_{\mathbf{x}}f(\mathbf{y}) = \mathbf{y}$, entonces la imagen de c está contenida en los puntos fijos $M^f = \{\mathbf{z} \in M \mid f(\mathbf{z}) = \mathbf{z}\}$.
 - (d) Probar que si $\mathbf{x} \in H$ e $\mathbf{y} \in T_{\mathbf{x}}H$ con $||\mathbf{y}||^2 = 1$, entonces la curva

$$c(t) = \cosh(t)\mathbf{x} + \sinh(t)\mathbf{y}$$

- está incluida en H (mirando $\mathbf{x}, \mathbf{y} \in \mathbb{R}^3$).
- (e) Sea $\mathbf{x} \in H$, $\mathbf{y} \in T_{\mathbf{x}}H$. Mirando $\mathbf{x}, \mathbf{y} \in \mathbb{R}^3$, sea V el plano que generan. Sea V^{\perp} el complemento ortogonal (con respecto a la métrica g_{ij}). Probar que si σ es el automorfismo lineal que fija los vectores de V y multiplica por -1 los vectores de V^{\perp} , entonces σ manda H en H.
- (f) Probar que c(t) definida en (3d) es una geodésica y que todas las geodésicas son de esa forma.