Geometría Diferencial

SEGUNDO CUATRIMESTRE 2003 PRÁCTICA 5

Variedades riemannianas y conexiones

1. Sea ∇ una conexión sobre una variedad M, y sea

$$T: \mathfrak{X}M \otimes \mathfrak{X}M \to \mathfrak{X}M, \quad T(X,Y) = \nabla_X Y - \nabla_Y X - [X,Y]$$

su torsión. Probar que T es $\mathcal{D}(M)$ -bilineal.

2. Sea S un tensor de tipo (r,s), es decir, $S: \mathfrak{X}(M)^{\otimes s} \to \mathfrak{X}(M)^{\otimes r}$, que en coordenadas locales se puede escribir como

$$S(x) = \sum_{\substack{i_1, \dots, i_r \\ i_1, \dots, i_s}} a_{i_1, \dots, i_r}^{j_1, \dots, j_s} \frac{\partial}{\partial \varphi^{i_1}} \otimes \dots \otimes \frac{\partial}{\partial \varphi^{i_r}} \otimes d\varphi_{j_1} \otimes \dots \otimes d\varphi_{j_s}$$

Probar que S es $\mathcal{D}(M)$ -multilineal. Recíprocamente, probar que una función $\mathcal{D}(M)$ -multilineal $S: \mathfrak{X}(M)^{\otimes s} \to \mathfrak{X}(M)^{\otimes r}$ es un tensor.

- Probar que el espacio de conexiones de una variedad es un espacio afín. En particular, probar que:
 - a) Una combinación lineal $\sum_i \alpha_i \nabla^i$, donde los ∇^i son conexiones y $\sum_i \alpha_i = 1$, es una conexión.
 - b) La diferencia entre dos conexiones es un tensor.
- 4. Probar que si (U, φ) es una carta de M, entonces la asignación $X \otimes (\sum_i \alpha_i \frac{\partial}{\partial \varphi^i}) \mapsto \sum_i X(\alpha_i) \frac{\partial}{\partial \varphi^i}$ define una conexión en U.
- 5. Probar que una variedad T_2 y N_2 admite una conexión (sugerencia: usar los dos ejercicios anteriores).
- 6. Probar que si ∇ es una conexión en M con torsión T, entonces $\nabla \frac{1}{2}T$ es una conexión simétrica. Encontrar sus símbolos de Christoffel en función de los de ∇ .
- 7. Encontrar una métrica de tipo (1, 1) sobre el toro.
- 8. a) Consideramos g en $S^2 \subseteq \mathbb{R}^3$, la métrica inducida de \mathbb{R}^3 . Si (U, x) es la carta tal que x^{-1} : $(0, \pi) \times (0, 2\pi) \to S^2$ es $x^{-1}(\theta, \alpha) = (\sin(\theta)\cos(\alpha), \sec(\theta)\cos(\alpha), \cos(\theta))$. Encontrar la expresión local de la métrica g en la carta (U, x). Expresar el elemento de volumen en la misma carta (es decir una 2-forma ω tal que $\omega(p)(v_1, v_2) = \pm 1$ si $\{v_1, v_2\}$ es base ortonormal de M_p .
 - b) $\mathbb{R}^2_+ := \{(x,y): y > 0\}$ (semiplano de Poincaré). Con respecto a la carta usual $(\mathbb{R}^2_+, \mathrm{id})$ consideramos la métrica $g = \frac{1}{y^2} dx \otimes dx + \frac{1}{y^2} dy \otimes dy$. Expresar la conexión de Levi-Civita en la carta usual.
 - c) Calcular la conexión de Levi-Civita para la métrica de Lorentz en \mathbb{R}^{n+1} dada, con respecto a la carta usual, por $g_{ii}=1$ si $1\leq i\leq n$ y $g_{n+1,n+1}=-1$. (Ver que el teorema de Levi-Civita se puede extender a métricas pseudo-riemannianas.)
- 9. Sea M una subvariedad de codimensión 1 de \mathbb{R}^n . Sea g la métrica canónica en \mathbb{R}^n , sea g_M la métrica sobre M pull-back de g y sea ∇ la conexión asociada a g_M . Probar que para campos $X, Y \in \mathfrak{X}(M)$, $\nabla_X Y$ coincide con la proyección ortogonal sobre TM de la derivada de (di)(Y) en la dirección (di)(X), donde $i: M \to \mathbb{R}^n$ es la inclusión.
- 10. Sea G un grupo que actúa sobre la variedad X de manera propiamente discontinua. Supongamos que en X se tiene una métrica g.
 - a) Definir el concepto de "métrica G-invariante".

- Probar que si q es G-invariante entonces la variedad X/G hereda una métrica de X; i.e, tiene una métrica con la que la proyección $X \to X/G$ es un morfismo de variedades de Riemann.
- Probar que si G es finito, \bar{g} definida por

$$\bar{g} = \frac{1}{|G|} \sum_{h \in G} d^* \rho_h(g)$$

es invariante (se nota por ρ_h la acción de $h \in G$ sobre X).

- ¿Qué sucede en el punto anterior si se tiene una métrica de tipo (r, s)?
- Probar que el espacio proyectivo \mathbb{P}^n hereda una métrica de S^n . Hacer lo propio con la banda de Möbius y la botella de Klein.
- Sea M una variedad difenciable de dimensión n y ∇ una conexión en M. Si $c:I\to M$ es una curva diferenciable, $t_0 \in I$ y v_1, \ldots, v_n es base de $M_{c(t_0)}$, sean $X_1, \ldots, X_n \in \mathfrak{X}_c^{\parallel}$ (campos paralelos a lo largo de c) de modo que $X_i(t_0) = v_i$.
 - a) Ver que $\mathfrak{X}_c^{\parallel}$ es un \mathbb{R} -espacio vectorial
 - b) $X_1(t), \ldots, X_n(t)$ son linealmente independientes en $M_{c(t)} \ \forall \ t \in I$
 - c) Si $Y \in \mathfrak{X}_c^{\parallel}$ es tal que $Y(t_0) = \sum_{i=1}^n a_i v_i$ entonces $Y(t) = \sum_{i=1}^n a_i X_i(t)$. Deducir la dimensión
- 13. Sea (M,g) una variedad Riemanniana con conexión ∇
 - Sea $c:I\to M$ una curva. Probar que son equivalentes:

 - 1) $D|_t(\langle X, Y \rangle) = 0$ si $X, Y \in \mathfrak{X}_c^{\parallel}$ 2) $X, Y \in \mathfrak{X}_c$, entonces $D|_t(\langle X, Y \rangle) = \langle \nabla_D X, Y \rangle + \langle X, \nabla_D Y \rangle$
 - Ver que son equivalentes:
 - 1) la condición (1-2) de a) se cumple para toda curva,
 - 2) ∇ es compatible con la métrica.
 - Deducir que si $X, Y \in \mathfrak{X}_c^{\parallel}$ y ∇ es compatible con la métrica, entonces las normas de X e Yse mantienen constantes y el ángulo entre X e Y también.
- Sean (M,g) una variedad riemanniana y ∇ compatible con g. Sea $c:I\to M$ una curva y $f:J\to I$ un difeomorfismo.
 - Ver que: a)

$$\nabla_D(c \circ f)|_t = \frac{\partial^2 f}{\partial^2 t}|_t \dot{c}(f(t)) + (\frac{\partial f}{\partial t})^2 \nabla_D \dot{c}|_{f(t)}$$

- b) Si $\dot{c}(0) \neq 0$, y c y $(c \circ f)$ son geodésicas, entonces f(t) = at + b con $a, b \in \mathbb{R}$ y $a \neq 0$.
- Sea M una variedad y ∇ una conexión. Si $X \in \mathfrak{X}(M)$, probar que son equivalentes:
 - $\nabla_X X = 0$ (en este caso decimos que X es paralelo)
 - Toda curva integral $c: I \to M$ de X es una geodésica.
- 16. Sea G un grupo de Lie de dimensión n. $X_1, \ldots, X_n \in L(G)$ de modo que $X_1(h), \ldots, X_n(h)$ es base de $G_h \ \forall h \in G$. Definimos:

$$\nabla_Z Y = \sum_{i=1}^n Z(\varphi^i) X_i$$

si $Y = \sum_{i=1}^{n} X_i$.

- a) ver que esta conexión no depende de los $\{X_i\}_{i=1}^n$ elegidos. Llamamos a esta conexión la conexión canónica de grupos de Lie.
- b) $\nabla_X X = 0$ si $X \in L(G)$. Luego toda curva integral de X es una geodésica.
- 17. Sea G un grupo de Lie con su conexión canónica. Si $c: I \to G$ es una geodésica, entonces existe un campo $X \in L(G)$ to c es una curva integral de X.

18. Sea $\mathrm{GL}(n,\mathbb{R})$ y ∇ la conexión canónica. Probar que la geodésica c tq c(0)=I y $\dot{c}(0)=A\in\mathbb{R}^{n\times n}$ es de la forma

$$c(t) = \sum_{k=0}^{\infty} \frac{(tA)^k}{k!}$$

- 19. Sea (M, ∇) . Probar que son equivalentes:
 - a) El campo geodésico es completo (se dice que la conexión es completa)
 - b) $(\exp)_p$ está definida en $M_p \ \forall p \in M$. Es decir si $v \in M_p$ entonces $1 \in I_v$, donde éste es el intervalo maximal del flujo del campo geodésico.