COMPLEMENTOS – FISICA

Práctica 5

Autovalores y Autovectores – Diagonalización

Ejercicio 1. Calcular el polinomio característico, los autovalores y los autovectores de la matriz A en cada uno de los siguientes casos:

(Analizar por separado los casos $K = \mathbb{R}$ y $K = \mathbb{C}$)

i)
$$A = \begin{pmatrix} 1 & 3 \\ -3 & -1 \end{pmatrix}$$

ii)
$$A = \begin{pmatrix} 1 & 3 \\ 3 & -1 \end{pmatrix}$$

i)
$$A = \begin{pmatrix} 1 & 3 \\ -3 & -1 \end{pmatrix}$$
 ii) $A = \begin{pmatrix} 1 & 3 \\ 3 & -1 \end{pmatrix}$ iii) $A = \begin{pmatrix} 0 & a \\ -a & 0 \end{pmatrix}, a \in \mathbb{R}$

iv)
$$A = \begin{pmatrix} 0 & 2 & 1 \\ -2 & 0 & 3 \\ -1 & -3 & 0 \end{pmatrix}$$

iv)
$$A = \begin{pmatrix} 0 & 2 & 1 \\ -2 & 0 & 3 \\ -1 & -3 & 0 \end{pmatrix}$$
 v) $A = \begin{pmatrix} 3 & 1 & 0 \\ -4 & -1 & 0 \\ 4 & -8 & -2 \end{pmatrix}$ vi) $A = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$

$$\text{vi) } A = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\text{vii)} \ \ A = \begin{pmatrix} 1 & 0 & 0 \\ a & 1 & 0 \\ 0 & a & 1 \end{pmatrix}, a \in \mathbb{R} \quad \text{viii)} \ \ A = \begin{pmatrix} a & 1 & 1 \\ 1 & a & 1 \\ 1 & 1 & a \end{pmatrix}, a \in \mathbb{R} \quad \text{ix)} \ \ A = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix}$$

Ejercicio 2. Para cada una de las matrices A del ejercicio anterior, sea U una base de K^n y sea $f: K^n \to K^n$ la tranformación lineal tal que $|f|_U = A$. Decidir si es posible encontrar una base B de K^n tal que $|f|_B$ sea diagonal. En caso afirmativo, calcular C(U,B).

Ejercicio 3. Sean $A, C y D \in K^{n \times n}$ tales que $A = C.D.C^{-1}$. Probar que, para todo $n \in \mathbb{N}, A^n = C.D^n.C^{-1}$

Ejercicio 4. Sea $f: \mathbb{R}^3 \to \mathbb{R}^3$ la transformación lineal definida por:

$$f(x,y,z) = (-x - 2.y + 6.z, 4.y, -x - 3.y + 4.z)$$

i) Encontrar una base B de \mathbb{R}^3 tal que $|f|_B$ sea diagonal.

ii) Calcular
$$\begin{pmatrix} -1 & -2 & 6 \\ 0 & 4 & 0 \\ -1 & -3 & 4 \end{pmatrix}^n , \ \forall \, n \in \mathbb{N}.$$

iii) Hallar, si es posible, una matriz $P \in \mathbb{R}^{3\times3}$ tal que $P^2 = \begin{pmatrix} -1 & -2 & 6 \\ 0 & 4 & 0 \\ -1 & -3 & 4 \end{pmatrix}$.

Ejercicio 5. Sea $f: K^n \to K^n$ un proyector con dim $(\operatorname{Im}(f))=s$. Probar que f es diagonalizable (ver Ejercicio 17 de la práctica 3). Calcular \mathcal{X}_f .

Ejercicio 6. Sea $A=\begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \in K^{2\times 2}$. Determinar todos los a, b y $c\in K$ para los que A es diagonalizable.

Ejercicio 7. Hallar todos los valores de $k \in \mathbb{R}$ tales que la siguiente matriz sea diagonalizable:

$$A = \begin{pmatrix} k & 1 & k+k^2 & -k^2 \\ 0 & k+1 & 0 & k \\ 0 & 1 & k & 1 \\ 0 & 0 & 0 & k+1 \end{pmatrix}$$

Ejercicio 8. Se define la sucesión $\{a_n\}_{n\in\mathbb{N}_0}$ de la siguiente manera:

$$\begin{cases} a_0 = 4, \ a_1 = 9 \\ a_{n+2} = 5.a_{n+1} - 6.a_n \quad \forall \ n \in \mathbb{N}_0 \end{cases}$$

- i) Sea $A = \begin{pmatrix} 0 & 1 \\ -6 & 5 \end{pmatrix}$. Verificar que, para cada $n \in \mathbb{N}_0$, $A \cdot \begin{pmatrix} a_n \\ a_{n+1} \end{pmatrix} = \begin{pmatrix} a_{n+1} \\ a_{n+2} \end{pmatrix}$.
- ii) Probar que, para todo $n \in \mathbb{N}, \ A^n \cdot \begin{pmatrix} 4 \\ 9 \end{pmatrix} = \begin{pmatrix} a_n \\ a_{n+1} \end{pmatrix}.$
- iii) Encontrar una matriz inversible P tal que $P.A.P^{-1}$ sea diagonal.
- iv) Hallar la fórmula general para el término a_n , $\forall n \in \mathbb{N}_0$.

Ejercicio 9. Encontrar una fórmula general para el término a_n $(n \in \mathbb{N}_0)$ de la sucesión $\{a_n\}_{n\in\mathbb{N}_0}$ definida por

$$a_{n+2} = \frac{a_{n+1} + a_n}{2} \qquad \forall \, n \in \mathbb{N}_0$$

en los siguientes casos:

- i) $a_0 = 1$, $a_1 = \frac{1}{2}$
- ii) $a_0 = 0, a_1 = 3$

Ejercicio 10. Resolver el sistema de ecuaciones en diferencias (es decir, encontrar una fórmula general para los términos x_n e y_n en función de x_0 e y_0):

2

$$\begin{cases} x_{n+1} = 6x_n + 2y_n \\ y_{n+1} = 2x_n + 3y_n \end{cases}$$

Ejercicio 11.

i) Resolver el siguiente sistema de ecuaciones diferenciales

$$\begin{cases} x'(t) = 6x(t) + 2y(t) \\ y'(t) = 2x(t) + 3y(t) \end{cases}$$

con condiciones iniciales x(0) = 3, y(0) = -1.

ii) Probar que $\{f \in \mathcal{C}^{\infty}(\mathbb{R}) : f'' = f\} = \langle e^x, e^{-x} \rangle$. Sugerencia: Llamar g = f' y considerar el sistema de ecuaciones $\begin{cases} f' = g \\ g' = f \end{cases}$

Ejercicio 12. Sea $\delta: C^{\infty}(\mathbb{R}) \to C^{\infty}(\mathbb{R})$ la transformación lineal derivación. Mostrar que para todo $\lambda \in \mathbb{R}$, la función $f(x) = e^{\lambda x}$ es un autovector de δ asociado al autovalor λ . (Observar que entonces δ tiene infinitos autovalores.)

Ejercicio 13. Sea $A \in K^{n \times n}$.

- i) Probar que A y A^t tienen los mismos autovalores. Dar un ejemplo en el que los autovectores sean distintos.
- ii) Probar que si A es inversible, entonces 0 no es autovalor de A; y si x es un autovector de A, entonces x es un autovector de A^{-1} .