COMPLEMENTOS MATEMÁTICA 3 (CA, F, O)

Práctica 4: Autovalores y autovectores - Diagonalización

1. Calcular el polinomio característico, los autovalores y los autovectores de la matriz A en cada uno de los siguientes casos:

(Analizar por separado los casos $\mathbb{K} = \mathbb{R}$ y $\mathbb{K} = \mathbb{C}$)

$$\mathbf{i})A = \begin{pmatrix} 1 & 3 \\ -3 & -1 \end{pmatrix} \qquad \mathbf{ii})A = \begin{pmatrix} 1 & 3 \\ 3 & -1 \end{pmatrix} \qquad \mathbf{iii})A = \begin{pmatrix} 0 & a \\ -a & 0 \end{pmatrix}, \quad a \in \mathbb{R}$$

$$iv)A = \begin{pmatrix} 0 & 2 & 1 \\ -2 & 0 & 3 \\ -1 & -3 & 0 \end{pmatrix} \quad v)A = \begin{pmatrix} 1 & 0 & 0 \\ a & 1 & 0 \\ 0 & a & 1 \end{pmatrix}, \quad a \in \mathbb{R} \quad viii)A = \begin{pmatrix} a & 1 & 1 \\ 1 & a & 1 \\ 1 & 1 & a \end{pmatrix}, \quad a \in \mathbb{R}$$

2. Sea $A \in \mathbb{C}^{n \times n}$ y sean $\lambda_1,...,\lambda_n$ las raíces de χ_A contadas con multiplicidad.

a) Probar que
$$\det(A) = \prod_{i=1}^{n} \lambda_i$$
.

b) Probar que
$$\operatorname{tr}(A) = \sum_{i=1}^{n} \lambda_i$$
.

3. Sea
$$A \in \mathbb{K}^{n \times n}$$

- a) Probar que A y A^t tienen los mismos autovalores. Dar un ejemplo en el que los autovectores sean distintos.
- b) Probar que si A es inversible, entonces 0 no es autovalor de A; y si x es un autovector de A, entonces x es un autovector de A^{-1} .
- 4. Dadas las matrices $A \in \mathbb{C}^{2 \times 2}$ y los polinomios $P \in \mathbb{C}[X]$, calcular P(A) para:

a)
$$A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$
, a) $P = X - 1$, b) $P = X^2 - 1$, c) $P = (X - 1)^2$

b)
$$A = \begin{pmatrix} i & 0 \\ 1 & -i \end{pmatrix}$$
, $P = X^3 - iX^2 + 1 + i$

5. Sean A, C y $D \in \mathbb{K}^{n \times n}$ tales que $A = CDC^{-1}$. Probar que, para todo $n \in \mathbb{N}$, $A^n = CD^nC^{-1}$

- 6. Utilizando el Teorema de Hamilton-Cayley:
 - a) Calcular $A^4 4A^3 A^2 + 2A 5I_2$ para $A = \begin{pmatrix} 2 & -1 \\ 1 & 3 \end{pmatrix}$
 - b) Calcular A^{1000} para $A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$
 - c) Calcular $\begin{pmatrix} 4 & -1 \\ 1 & 2 \end{pmatrix}^n \forall n \in \mathbb{N}$
 - d) Dada $A = \begin{pmatrix} 1 & 3 \\ -1 & 4 \end{pmatrix}$, expresar a A^{-1} como combinación lineal de A y de I_2 .
- 7. Sea $A \in \mathbb{R}^{n \times n}$. Probar que el minimal de A como matriz real y el minimal de A como matriz compleja coinciden.
- 8. Hallar el polinomio minimal de las siguientes matrices (comparar con el característico):

$$i) \begin{pmatrix} 4 & 1 \\ -2 & 1 \end{pmatrix} , \quad ii) \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} , \quad iii) \begin{pmatrix} i & 0 \\ 1 & i \end{pmatrix} , \quad iv) \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

$$v) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} , \quad vi) \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} , \quad ix) \begin{pmatrix} 1 & i & 1 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix} , \quad x) \begin{pmatrix} a & 0 & 0 & 0 \\ 1 & a & 0 & 0 \\ 0 & 1 & a & 0 \\ 0 & 0 & 0 & a \end{pmatrix}$$

9. Calcular el polinomio minimal para cada una de las siguientes transformaciones lineales:

a)
$$f: \mathbb{R}_2[X] \to \mathbb{R}_2[X], f(P) = P' + 2.P$$

b)
$$f: \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}, f(A) = A^t$$

- 10. Sea $\delta: C^{\infty}(\mathbb{R}) \to C^{\infty}(\mathbb{R})$ la transformación lineal derivación.
 - a) Mostrar que para todo $\lambda \in \mathbb{R}$, la función $f(x) = e^{\lambda x}$ es un autovector de δ asociado al autovalor λ . (Observar que entonces δ tiene infinitos autovalores.)
 - b) Mostrar que no existe $P \in \mathbb{R}[X]$ tal que $P(\delta) = 0$.
- 11. Sea $A \in \mathbb{K}^{n \times n}$ la matriz

$$A = \begin{pmatrix} 0 & 0 & 0 & \dots & 0 & -a_0 \\ 1 & 0 & 0 & \dots & 0 & -a_1 \\ 0 & 1 & 0 & \dots & 0 & -a_2 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 0 & -a_{n-2} \\ 0 & 0 & 0 & \dots & 1 & -a_{n-1} \end{pmatrix}$$

2

Calcular su polinomio minimal y su polinomio característico.

- 12. Para cada una de las matrices A del ejercicio 1, sea U una base de \mathbb{K}^n y sea $f: \mathbb{K}^n \to \mathbb{K}^n$ la tranformación lineal tal que $|f|_U = A$. Decidir si es posible encontrar una base B de \mathbb{K}^n tal que $|f|_B$ sea diagonal. En caso afirmativo, calcular C(U, B).
- 13. Sea $f: \mathbb{R}^3 \to \mathbb{R}^3$ la transformación lineal definida por:

$$f(x, y, z) = (-x - 2y + 6z, 4y, -x - 3y + 4z)$$

- a) Encontrar una base B de \mathbb{R}^3 tal que $|f|_B$ sea diagonal.
- b) Calcular $\begin{pmatrix} -1 & -2 & 6 \\ 0 & 4 & 0 \\ -1 & -3 & 4 \end{pmatrix}^n, \forall n \in \mathbb{N}.$
- c) Hallar, si es posible, una matriz $P \in \mathbb{R}^{3\times 3}$ tal que $P^2 = \begin{pmatrix} -1 & -2 & 6 \\ 0 & 4 & 0 \\ -1 & -3 & 4 \end{pmatrix}$.
- 14. Sea $A = \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \in \mathbb{K}^{2 \times 2}$. Determinar todos los a, b y $c \in \mathbb{K}$ para los que A es diagonalizable.
- 15. Hallar todos los valores de $k \in \mathbb{R}$ tales que la siguiente matriz sea diagonalizable:

$$A = \begin{pmatrix} k & 1 & k+k^2 & -k^2 \\ 0 & k+1 & 0 & k \\ 0 & 1 & k & 1 \\ 0 & 0 & 0 & k+1 \end{pmatrix}$$

16. Diagonalizar las matrices $A \in \mathbb{R}^{n \times n}$ y $B \in \mathbb{R}^{6 \times 6}$ encontrando sus autovectores:

$$A = \begin{pmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & 1 & 1 & \dots & 1 \\ 1 & 1 & 1 & \dots & 1 \\ \dots & \dots & \dots & \dots & \dots \\ 1 & 1 & 1 & \dots & 1 \end{pmatrix} \qquad y \qquad B = \begin{pmatrix} 2 & 1 & 2 & 1 & 2 & 1 \\ 1 & 2 & 1 & 2 & 1 & 2 \\ 2 & 1 & 2 & 1 & 2 & 1 \\ 1 & 2 & 1 & 2 & 1 & 2 \\ 2 & 1 & 2 & 1 & 2 & 1 \\ 1 & 2 & 1 & 2 & 1 & 2 \end{pmatrix}$$

Sugerencia: no intentar calcular el polinomio característico.

- 17. Se sabe que la matriz $A \in \mathbb{R}^{2 \times 2}$ tiene a (1,-1) como autovector de autovalor $\sqrt{2}$ y, además, $\chi_A \in \mathbb{Q}[X]$. Decidir si A es diagonalizable en $\mathbb{R}^{2 \times 2}$. ¿Es A única?
- 18. a) Sea $A \in \mathbb{R}^{3\times 3}$ diagonalizable con tr(A) = -4. Calcular los autovalores de A, sabiendo que los autovalores de $A^2 + 2A$ son -1, 3 y 8.

3

- b) Sea $A \in \mathbb{R}^{4 \times 4}$ tal que det (A) = 6; 1 y -2 son autovalores de A y -4 es autovalor de la matriz $A 3.I_4$. Hallar los restantes autovalores de A.
- 19. Sea $A \in \mathbb{R}^{n \times n}$ que verifica $A^2 + I_n = 0$. Probar que A es inversible, que no tiene autovalores reales y que n debe ser par.
- 20. Sea V un \mathbb{K} -espacio vectorial de dimensión finita y sea $f: V \to V$ una transformación lineal tal que dim (Im (f)) = 1. Probar que f es diagonalizable si y sólo si Nu $(f) \cap \operatorname{Im}(f) = \{0\}$.
- 21. Sea $f: \mathbb{C}^n \to \mathbb{C}^n$ una transformación lineal. Probar que existe una base B de \mathbb{C}^n tal que $|f|_B$ es triangular superior.
- 22. Sean A, B y $D \in \mathbb{K}^{n \times n}$.
 - a) Probar que si D es una matriz diagonal que sólo tiene unos y ceros en la diagonal entonces $\chi_{AD}=\chi_{DA}$.
 - b) Probar que para toda $B\,,\ \chi_{{\scriptscriptstyle AB}}=\chi_{{\scriptscriptstyle BA}}$

Sugerencia: usar equivalencia (no semejanza) de matrices.

- 23. Sea V un \mathbb{K} -espacio vectorial de dimensión finita y sea $f:V\to V$ una transformación lineal. Probar que f es un isomorfismo si y sólo si el término constante de χ_f es no nulo. En dicho caso, hallar la expresión general de f^{-1} como polinomio en f.
- 24. Sea $f:\mathbb{R}^5 \to \mathbb{R}^5$ la transformación lineal definida por:

$$f(x_1, x_2, x_3, x_4, x_5) = (x_2, x_3, x_4, x_5, 0).$$

- a) Hallar, para cada $0 \le i \le 5$, un subespacio S_i de \mathbb{R}^5 con $\dim(S_i) = i$ que sea f-invariante.
- b) Probar que no existen subespacios propios f-invariantes S y T de \mathbb{R}^5 tales que $\mathbb{R}^5 = S \oplus T$.
- 25. Sea $A \in \mathbb{R}^{3 \times 3}$ tal que $\chi_A = (x \alpha)(x z)(x \bar{z})$, con $\alpha \in \mathbb{R}$ y $z \in \mathbb{C} \mathbb{R}$. Sea $g_A : \mathbb{C}^3 \to \mathbb{C}^3$ la transformación lineal $g_A(x) = Ax$.
 - a) Probar que existe v_1 , autovector de g_A de autovalor α , con todas sus coordenadas reales.
 - b) Sea $w=v_2+iv_3$, con $v_2,v_3\in\mathbb{R}^3$, un autovector de g_A asociado al autovalor z. Probar que $\overline{w}=v_2-iv_3$ es un autovector de g_A de autovalor \bar{z} .
 - c) Se considera $f_A : \mathbb{R}^3 \to \mathbb{R}^3$ la transformación lineal $f_A(x) = Ax$. Probar que $\langle v_2, v_3 \rangle \subseteq \mathbb{R}^3$ es un subespacio f_A -invariante de dimensión 2.
 - d) Sea $B=\{v_1,v_2,v_3\}$. Verificar que B es una base de \mathbb{R}^3 y hallar $|f_A|_B$.

- 26. Sea $A = \begin{pmatrix} -1 & 0 & 2 \\ 5 & 4 & 2 \\ -4 & -3 & -2 \end{pmatrix} \in \mathbb{R}^{3\times 3}$, y sea $f_A : \mathbb{R}^3 \to \mathbb{R}^3$ la transformación lineal definida por $f_A(x) = Ax$. Hallar subespacios propios S y T de \mathbb{R}^3 , f_A -invariantes, tales que $S \oplus T = \mathbb{R}^3$.
- 27. a) Hallar una matriz $A \in \mathbb{C}^{3\times 3}$ tal que $m_A(X) = X^3 5X^2 + 6X + 8$. Decidir si A es diagonalizable.
 - b) Hallar una matriz $A \in \mathbb{C}^{4\times 4}$ tal que $m_A(X) = X^4 + 4X^3 + 8X^2 + 8X + 4$. Decidir si A es diagonalizable.