Práctica 6

- **1. a)** Sea f entera y tal que $\lim_{|z| \to \infty} f(z) = 0$. Probar que $f \equiv 0$.
 - **b)** Hallar todas las f enteras tales que $\lim_{|z| \to \infty} f(z) = 5$.
- 2. Sea $f(z) = \frac{1}{z(z-1)(z-2)}$; hallar el desarrollo en serie de Laurent de f en cada uno de los siguientes anillos:
 - a) 0 < |z| < 1
 - **b)** 1 < |z| < 2
 - c) |z| > 2
 - **d)** 1 < |z 2| < 2
 - e) 0 < |z 2| < 1
 - **f)** 0 < |z 1| < 1
- 3. Hallar el desarrollo en serie de Laurent de $f(z)=\frac{1}{(z-1)(z-2)}$ multiplicando los desarrollos de $\frac{1}{z-1}$ y de $\frac{1}{z-2}$.
- 4. Hallar el desarrollo en serie de Laurent de las siguientes funciones en las regiones indicadas

a)
$$\frac{2}{z^3 - 3z^2 + 2z}$$
 en $1 < |z| < 2$

b)
$$\frac{1}{z(z-1)^2}$$
 en $0 < |z-1| < 1$ y en $|z-1| > 1$

c)
$$\frac{z}{(z-1)^3}$$
 en $\mathbb{C} - \{1\}$, en $|z| < 1$ y en $|z| > 1$

d)
$$\frac{z^2-1}{(z+2)(z+3)^2}$$
 en:
(1) $|z|<2$ (2) $0<|z+3|<1$ (3) $|z|>3$ (4) $0<|z+2|<1$ (5) $2<|z|<3$

- 5. Si f tiene una singularidad no evitable en z = i y en z = 2i, probar que el desarrollo en serie de Laurent de f en la corona 1 < |z| < 2 tiene infinitos términos positivos e infinitos términos negativos no nulos.
- 6. Probar que todo disco perforado $0 < |z| < \varepsilon$ la función $e^{\frac{1}{z}}$ toma todos los valores complejos salvo el cero.
- 7. Sea $f(z) = e^{-\frac{1}{z^2}}$, $z \neq 0$. Mostrar que f tiene una singularidad esencial en z = 0 y explicar por qué este hecho muestra que $F: \mathbb{R} \to \mathbb{R}$ dada por F(0) = 0 y $F(x) = e^{-\frac{1}{x^2}}$, $x \neq 0$, si bien es indefinidamente derivable en \mathbb{R} , no coincide con su serie de Taylor en ningún entorno de cero.
- 8. Cada una de las siguientes funciones tiene una singularidad aislada en z=0. Determinar su naturaleza. Si es evitable, definir f(0) de modo que resulte holomorfa en z=0. Si es un polo, hallar la parte singular

$$\mathbf{a)} \ f(z) = \frac{\mathrm{sen}z}{z}$$

$$\mathbf{b)} \ f(z) = \frac{\cos z}{z}$$

$$\mathbf{c)}\ f(z) = \frac{\cos z - 1}{z}$$

d)
$$f(z) = e^{\frac{1}{z}}$$

e)
$$f(z) = \frac{\log(z+1)}{z}$$

h) $f(z) = \frac{1}{1-e^z}$

$$\mathbf{f)} \ f(z) = \frac{1}{z} \cos\left(\frac{1}{z}\right)$$

g)
$$f(z) = \frac{z^2 + 1}{z(z - 1)}$$

h)
$$f(z) = \frac{1}{1 - e^z}$$

$$\mathbf{i)} \ f(z) = z \mathrm{sen}\left(\frac{1}{z}\right)$$

- **9.** Determinar la descomposición en fracciones simples de $\frac{z^2+1}{(z^2+z+1)(z-1)^2}$.
- 10. Hallar y clasificar las singularidades de

a)
$$\frac{\text{sen}(2z)}{(z+1)^3}$$

b)
$$\operatorname{sen} z \operatorname{sen} (\frac{1}{z})$$

c)
$$\frac{\operatorname{tg} z}{z^n}$$

$$\mathbf{d)} \ \frac{1 - \cos z}{z^n} - \frac{1}{z}$$

e)
$$-\frac{1}{\sec(z^2+1)^{-1}}$$

$$\mathbf{f)} \ \frac{\cos z}{e^{\frac{1}{z-1}}}$$

$$\mathbf{g)} \; \frac{1}{\cos(z+1)}$$

- 11. Probar que un punto singular aislado a de f es un polo si y sólo si $\lim_{z\to a} |f(z)| = \infty$.
- **12.** a) Mostrar que $f(z) = \operatorname{tg} z$ es meromorfa en \mathbb{C} .
 - b) Hallar sus polos y el orden de los mismos.
 - c) Determinar la parte singular de f en cada polo.

13. Sea $f(z) = \frac{a_m z^m + \ldots + a_1 z + a_0}{b_n z^n + \ldots + b_1 z + b_0}$. Probar

- a) ∞ es a lo sumo una singularidad aislada.
- **b)** si m < n, ∞ es una singularidad evitable.
- c) si m = n, f es holomorfa en ∞ .
- d) si m > n, ∞ es un polo. Hallar su orden.
- 14. a) Probar que una función entera tiene una singularidad evitable en ∞ si y sólo si es constante.
 - b) Probar que una función entera tiene un polo de orden m en ∞ si y sólo si es un polinomio de grado m.
 - c) Caracterizar a las funciones racionales que tienen una singularidad evitable en ∞ .
 - d) Caracterizar a las funciones racionales que tienen un polo de orden m en ∞ .
- 15. Clasificar las singularidades de las siguientes funciones en \mathbb{C}_{∞}

a)
$$\frac{e^z - 1 - z}{z^2}$$

b)
$$\cos z \cdot e^{-\frac{1}{z^2}}$$

c)
$$\frac{1}{z^3 - 7z^2 + z + 5} + ze^{\frac{1}{z}}$$
 d) $\frac{z^5}{1 + z^4}$

d)
$$\frac{z^5}{1+z^4}$$

$$\mathbf{e)} \left(\operatorname{sen} \left(\frac{1}{z^2} \right) \right)^{-1}$$

$$\mathbf{f)} \ e^{\frac{z}{1-z}}$$

g)
$$\frac{\cos z - \sin z}{z^4 + 2z^2 + 1}$$

h)
$$sen(\frac{1}{z}) + \frac{1}{z^2}$$

$$\mathbf{i)} \ \frac{1}{\cos z - 1}$$

$$\mathbf{j)} \frac{\operatorname{sen}(\frac{z}{z+3})}{(z+2-\frac{i}{4\pi})(1-e^{1/(z+2)})}$$

- **16.** a) Hallar una función f tal que Res(f,0) = 0 y f no holomorfa en 0.
 - b) Mostrar que una función puede ser holomorfa en ∞ y tener residuo no nulo allí .
 - c) Probar que si f tiene una singularidad esencial en z = a, $\frac{1}{f}$ tiene una singularidad esencial, o no aislada, en z = a.
 - d) Mostrar que si ∞ es un cero de f de orden mayor que 1, entonces $\operatorname{Res}(f,\infty)=0$.
 - e) Mostrar que si ∞ es un cero simple de f, entonces : $\operatorname{Res}(f,\infty) = -\lim_{z \to \infty} z f(z)$.

17. Probar:

- a) Sea a un polo de orden m de f y sea $g(z) = (z-a)^m f(z)$, entonces: Res $(f,a) = \frac{1}{(m-1)!} g^{(m-1)}(a)$
- **b)** Si a es un polo simple de f, entonces: $\operatorname{Res}(f,a) = \lim_{z \to a} (z-a)f(z)$
- 18. Sea f una función meromorfa en un abierto conexo G. Probar:
 - a) Si f tiene un polo de orden m en $a \in G$, su derivada logar' i tmica tiene en él un polo simple, siendo $\operatorname{Res}(f'/f,a) = -m$.
 - b) Si f tiene un cero de orden m en $b \in G$, su derivada logarítmica tiene en él un polo simple, siendo $\operatorname{Res}(f'/f, b) = m$.
 - c) Si f tiene un polo simple en a y g es holomorfa en a entonces Res(fg,a) = Res(f,a).g(a).
- 19. Calcular los residuos de f en cada una de sus singularidades aisladas

a)
$$f(z) = \frac{1}{z^2(z+1)}$$

b)
$$f(z) = \frac{1}{z^3} \text{sen} z$$

c)
$$f(z) = z^5 \cos z$$

d)
$$f(z) = \frac{e^{\frac{1}{z}}}{1+z}$$

e)
$$f(z) = e^{\frac{1}{z}}$$

f)
$$f(z) = \frac{\cos z}{\sin z}$$

g)
$$f(z) = e^{2z}(z-1)^2$$

$$\mathbf{h)} \ f(z) = \frac{\cos z}{z+1}$$

$$\mathbf{i)} \ f(z) = \frac{\mathrm{sen}z}{z}$$

j)
$$f(z) = \frac{1+z^2}{z(z-1)^2}$$

$$\mathbf{k)} \ f(z) = \frac{1 - \cos z}{z^2}$$

1)
$$f(z) = \frac{z^2 + 1}{(z+1)^7(z^2+2)(z-1)}$$

m)
$$f(z) = \cos\left(\frac{\pi}{z-\pi}\right)$$

n)
$$f(z) = e^{\frac{1}{z^2}}$$

20. Calcular los siguientes residuos

a)
$$z^2(z-1)^{-1}$$
 en $z=0$

b)
$$ze^z(z^2-1)^{-1}$$
 en $z=1$

c)
$$e^z(z-1)^{-2}z^{-1}$$
 en $z=0,1$

d)
$$\frac{z^3}{(z-1)(z-2)(z-3)}$$
 en $z = \infty$

e)
$$e^{az}(1+e^z)^{-1}$$
 en $z=\pi i$

f)
$$\frac{e^{\frac{1}{z}}}{(z+1)z}$$
 en $z=0,-1,\infty$

21. Sea $\mathcal C$ la circunferencia |z|=2, recorrida una vez en sentido positivo. Calcular:

$$\mathbf{a)} \int_{\mathcal{C}} \frac{z}{z^4 + 1} dz$$

$$\mathbf{b)} \int_{\mathcal{C}} \frac{1 + \mathrm{sen}z}{\mathrm{sen}z} dz$$

c)
$$\int_{\mathcal{C}} \frac{dz}{(z+1)^4(z^2-9)(z-4)}$$

22. Sea $G = \mathbb{C} - [-1, 1]$. Se define en G la función $f(z) = z^2 \log \left(\frac{z+1}{z-1} \right)$.

- a) Calcular $\operatorname{Res}(f, \infty)$.
- b) Utilizando el método de los residuos, calcular:

$$\int_C f(z)dz \qquad \quad \text{y} \qquad \int_C \frac{z^3}{z^2+1}dz$$
 siendo $C:|z|=2$

23. Clasificar las singularidades y hallar todos los residuos en \mathbb{C}_{∞} de:

a)
$$\frac{e^{z^2 + \frac{1}{z^2}} - 1}{z^2 - 1}$$

b)
$$\frac{\cos z - 1}{z^6 + z^4}$$

c)
$$\frac{\cos z - 1}{(z - 2\pi)^2} + \frac{z - 3}{(z + 1)^2(z - 2)}$$

24. Sea f una función holomorfa en $\mathbb{C}_{\infty} - \{-1, 2\}$ tal que -1 es un polo simple y 2 un polo doble. Se sabe además que:

- Res
$$(f, -1) = 1$$
 y Res $(f, 2) = 2$
- $f(0) = \frac{7}{4}$ y $f(1) = \frac{5}{2}$

Determinar f y calcular su desarrollo en serie de Laurent en potencias de z en la corona 1 < |z| < 2 y el residuo de f en ∞ .

25. Calcular:

a)
$$\int_{\gamma} \frac{z^3 + 2z^2 + z + 1}{3z^5 - 2z^4 + 5} dz$$
 $\gamma: |z| = 3$ en sentido positivo

b)
$$\int_{\gamma} \frac{dz}{\sin^2 z^2}$$
 $\gamma: |z| = \frac{\pi}{2}$ en sentido negativo

- **26.** Sea a una singularidad aislada de f y $\gamma(t)=a+re^{it}$,, $0\leq t\leq 2\pi$. Probar que $\mathrm{Res}(f,a)=\frac{1}{2\pi i}\int_{\gamma}f(z)dz.$
- 27. Calcular, sin efectuar el desarrollo, el radio de convergencia de las series de Taylor de las siguientes funciones

$$\mathbf{a)} \ \frac{1}{\operatorname{sen}(1+iz)} \text{ en } z = 0$$

$$\mathbf{b)} \; \frac{1}{\mathrm{sen}z} \; \mathrm{en} \; z = \frac{3}{2} - i$$