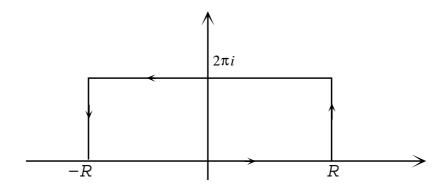
Práctica 7

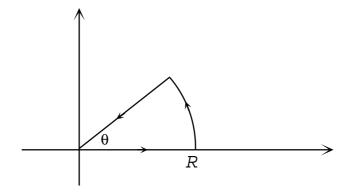
1. a) Verificar que $\int_{-\infty}^{\infty} \frac{e^{ax}}{1+e^x} dx = \frac{\pi}{\operatorname{sen}(a\pi)}$, 0 < a < 1, integrando la función $\frac{e^{az}}{1+e^z}$ en:



- b) Calcular $\int_0^\infty \frac{\sin^2(x)}{x^2} dx$ considerando la función $\frac{1 e^{2iz}}{z^2}$ y aplicando el teorema de los residuos sobre un recinto apropiado.
- c) Calcular $\int_{-\infty}^{\infty} \frac{e^{\frac{2\pi x}{3}}}{\operatorname{ch}(\pi x)} dx$ usando como recinto el rectángulo de vértices: -a, a, a+i, -a+i.
- **2.** Sean: $I_1 = \int_0^\infty x^a \cos x dx$, $I_2 = \int_0^\infty x^a \sin x dx$, -1 < a < 0. Demostrar, integrando sobre un contorno adecuado la función $z^a e^{iz}$, que $I_1 = -I_2$. $\operatorname{tg}(\frac{\pi a}{2})$.
- 3. Probar que $\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}$
- **4.** Para $0 < \theta < \frac{\pi}{4}$, calcular:

$$\int_0^\infty e^{-x^2\cos(2\theta)}\cos(x^2\sin(2\theta))dx \quad y \quad \int_0^\infty e^{-x^2\cos(2\theta)}\sin(x^2\sin(2\theta))dx$$

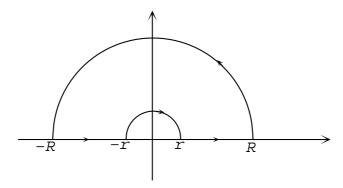
integrando la función e^{-z^2} sobre el contorno



5. Dado $a \in \mathbb{R}_{\neq 0}$, calcular las integrales:

$$\int_0^\infty \frac{\log x}{x^2 + a^2} dx \qquad \text{y} \qquad \int_0^\infty \frac{(\log x)^2}{x^2 + a^2} dx$$

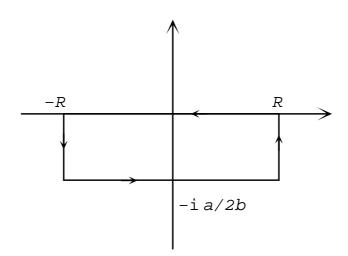
integrando (respectivamente) las funciones $\frac{\log z}{z^2+a^2}$ y $\frac{(\log z)^2}{z^2+a^2}$ sobre el contorno



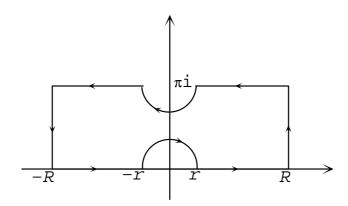
a)
$$\int_{-\infty}^{\infty} \frac{dx}{x^3 - 4x^2 + 5x}$$

6. Calcular el valor principal de:
a)
$$\int_{-\infty}^{\infty} \frac{dx}{x^3 - 4x^2 + 5x}$$
 b) $\int_{-\infty}^{\infty} \frac{\text{sen}x}{(x^2 + 4)(x - 1)} dx$

7. Calcular la integral de Gauss: $\int_{-\infty}^{\infty} e^{iax-bx^2} dx$, a, $b \in \mathbb{R}_{>0}$, completando cuadrados en el exponente del integrando y aplicando el teorema de los residuos en el contorno:



8. Calcular $\int_0^\infty \frac{\sin x}{\sin x} dx$ integrando $\frac{e^{iz}}{\sin z}$ en el recinto:



9. a) Calcular las integrales de Fresnel

$$\int_0^\infty \cos(x^2) dx \qquad \qquad \int_0^\infty \sin(x^2) dx$$

- **b)** Calcular $\int_{-\infty}^{\infty} e^{-\lambda x^2} \cos(2\lambda \theta x) dx$, λ , $\theta > 0$.

a)
$$\int_0^\infty \frac{x^2}{x^4 + x^2 + 1} dx$$

10. Calcular
a)
$$\int_0^\infty \frac{x^2}{x^4 + x^2 + 1} dx$$
 b) $\int_0^\pi \frac{\cos(2\theta)}{1 - 2a\cos\theta + a^2} d\theta$, $a^2 < 1$
c) $\int_0^\infty \frac{\cos x - 1}{x^2} dx$ d) $\int_0^\pi \frac{d\theta}{(a + \cos\theta)^2}$, $a > 1$

c)
$$\int_0^\infty \frac{\cos x - 1}{x^2} dx$$

d)
$$\int_0^{\pi} \frac{d\theta}{(a+\cos\theta)^2} , a > 1$$

11. Probar que

a)
$$\int_{-\infty}^{\infty} \frac{x^2}{1+x^4} dx = \frac{\pi}{\sqrt{2}}$$

$$\mathbf{b)} \int_0^\infty \frac{\mathrm{sen}x}{x} dx = \frac{\pi}{2}$$

$$\mathbf{c)} \ \int_0^\infty \frac{\log x}{x^2 + 1} dx = 0$$

d)
$$\int_0^\infty \frac{dx}{1+x^2} dx = \frac{\pi}{2}$$

e)
$$\int_0^\infty \frac{\log x}{x^2 - 1} dx = \frac{\pi^2}{4}$$

$$\mathbf{f)} \int_0^\infty \frac{\sqrt[3]{x}}{(1+x^2)^2} dx = \frac{\pi}{3\sqrt{3}}$$

12. a) Verificar que

$$f_n(x) = \begin{cases} \frac{1}{\sqrt{n}} & \text{si } 0 \le x \le n \\ 0 & \text{si } x > n \end{cases}$$

converge uniformemente a cero en \mathbb{R} pero que (f_n) no converge a cero en media cuadrática.

- **b)** Verificar que $f_n(x) = \sqrt{2nxe^{-nx^2}}$ converge puntualmente a cero en [0,1] pero que (f_n) no converge en media cuadrática en $[0, +\infty)$.
- c) Mostrar que la convergencia en media cuadrática no implica la convergencia puntual.

13. Sea f integrable en [-p, p] y tal que f(x + 2p) = f(x) para todo $x \in \mathbb{R}$.

a) Probar que:

$$\star \int_{a-p}^{a+p} f(t)dt = \int_{-p}^{p} f(t)dt \text{ para todo } a \in \mathbb{R}$$
$$\star \int_{2p}^{2p+x} f(t)dt = \int_{0}^{x} f(t)dt \text{ para todo } a \in \mathbb{R}$$

b) Sea
$$g(x) = \int_0^x f(t)dt$$
. Probar que:

$$g(x+2p) = g(x) \iff \int_{-p}^{p} f(t)dt = 0$$

- **14.** Sea $f: [-\pi, \pi] \to \mathbb{C}$ integrable y tal que se extiende a \mathbb{R} con período 2π . Sean c_n $(n \in \mathbb{Z})$, a_n $(n \in \mathbb{N}_0)$ y b_n $(n \in \mathbb{N})$ los coeficientes de su desarrollo de Fourier exponencial y trigonométrico, respectivamente.
 - a) Calcular c_n en función de a_n y b_n suponiendo que $\bar{c}_n = c_{-n}$ y comprobar que esta relación se cumple cuando $f(x) \in \mathbb{R}$ para todo $x \in \mathbb{R}$.
 - b) A partir del desarrollo en serie de Fourier de f(x) obtener el de f(-x).
 - c) Si $f_p(x)$ y $f_i(x)$ son, respectivamente, las partes par e impar de f(x), obtener sus desarrollos en serie de Fourier a partir del de f(x).
- **15. a)** Hallar la serie trigonométrica de Fourier de $f:(-\pi,\pi)\to\mathbb{R}$ para:

(i)
$$f(x) = \begin{cases} 1 & \text{si } 0 < x < \pi \\ -1 & \text{si } -\pi < x \le 0 \end{cases}$$

(ii)
$$f(x) = x$$

(iii)
$$f(x) = x^2$$

(iv)
$$f(x) = \begin{cases} 0 & \text{si } -\pi < x < 0 \\ \text{sen} x & \text{si } 0 \le x < \pi \end{cases}$$

b) Usando (iii), calcular las sumas de las series:

$$\sum_{n\geq 1} \frac{(-1)^{n+1}}{n^2} \qquad \sum_{n\geq 1} \frac{1}{n^2} \qquad \sum_{n\geq 0} \frac{1}{(2n+1)^2}$$

c) Integrando la serie de Fourier de $f(x) = x^2$, $x \in (-\pi, \pi)$, y extendiendo f por periodicidad a \mathbb{R} , probar que:

(i)
$$\sum_{n>1} (-1)^n \frac{\operatorname{sen}(nt)}{n^3} = \frac{1}{12} t(t^2 - \pi^2)$$

(ii)
$$\sum_{n\geq 1} \frac{1}{n^6} = \frac{\pi^6}{945}$$

16. a) A partir del desarrollo en serie de Fourier exponencial de la función 2π -periódica que coincide con e^x en $(-\pi, \pi)$, calcular la suma de la serie:

$$\sum_{n\geq 1} \frac{1}{1+n^2}$$

- b) Obtener la serie de Fourier trigonométrica de la función dada en a), a partir del desarrollo en serie exponencial.
- 17. a) Si f(x) = |sen x|, $-\pi \le x \le \pi$, probar que f(x) es la suma de su serie trigonométrica de Fourier en todo punto.
 - b) Sumar las series:

$$\sum_{n>0} \frac{(-1)^n}{16n^2 - 1} \qquad \sum_{n>1} \frac{1}{4n^2 - 1}$$

- c) Usando la igualdad de Parseval, sumar la serie: $\sum_{n\geq 0}\frac{1}{(4n^2-1)^2}$
- **18.** Sea f una función de período 2π que –en $[-\pi,\pi]$ se define como $f(x)=\cos(ax)$ $(a\in\mathbb{R}).$
 - a) Desarrollar f en serie trigonométrica de Fourier y estudiar la convergencia puntual de la serie hacia la función.
 - **b)** Calcular la suma de la serie: $\sum_{n\geq 1} \frac{1}{(n^2-b^2)^2}$, $b\in \mathbb{R}-\mathbb{Z}$.
- 19. Desarrollar en serie exponencial de Fourier f(x) = sen x, $0 \le x \le 1$. A partir de este desarrollo, obtener la serie trigonométrica de f.
- **20.** a) Obtener la serie exponencial de Fourier de $f(x) = e^{\alpha e^{ix}}$, $-\pi \le x \le \pi$, $\alpha \in \mathbb{C}$.

b) Probar que:
$$\frac{1}{2\pi} \int_{-\pi}^{\pi} e^{2\alpha \cos x} dx = \sum_{n \ge 0} \frac{\alpha^{2n}}{n!^2}, \ \alpha \in \mathbb{R}.$$

21. Si

$$f(x) = \begin{cases} x^2 & , -1 < x \le 0 \\ 0 & , 0 \le x < 1 \\ \frac{1}{2} & , x = 1 \end{cases}$$
 y $f(x+2) = f(x)$ para todo $x \in \mathbb{R}$

hallar la serie trigonométrica de Fourier asociada y probar que converge a f(x) para todo x.

22. Probar que si f es integrable y 2p-periódica:

$$\frac{1}{2p} \int_0^{2p} f(x)(p-x)dx = \sum_{n>1} \frac{b_n}{nw_0}$$

donde b_n es un coeficiente de Fourier de f y $w_0 = \frac{\pi}{p}$.

Sugerencia: usar el ejercicio 13 e integración por partes.

23. Obtener las series de senos y cosenos de Fourier correspondientes a las siguientes funciones definidas en $(0, \pi)$:

a)
$$f(x) = \cos x$$
 b) $f(x) = -x$ c) $f(x) = \begin{cases} 1 & 0 < x < \frac{\pi}{2} \\ 0 & \frac{\pi}{2} \le x < \pi \end{cases}$

24. Sean:
$$f(x) = \begin{cases} 1 & , \ 0 \le x < \frac{\pi}{2} \\ \frac{1}{2} & , \ x = \frac{\pi}{2} \\ 0 & , \frac{\pi}{2} < x < \pi \end{cases}$$
 y $g(x) = x$, $0 \le x < \pi$.

- a) Calcular los desarrollos en serie de Fourier de senos de f y g y estudiar la convergencia puntual de ambas series.
- **b)** Hallar la suma de la serie: $\sum_{n\geq 1} \left(\frac{1}{(2n-1)^2} \frac{1}{4n^2} \right)$
- **25.** Sea f 2p—periódica e integrable. Se define:

$$F(t) = \int_0^t f(x)dx - \frac{1}{2}at$$

donde $a = \frac{1}{p} \int_{-p}^{p} f(x) dx$. Demostrar que F es 2p-periódica.

26. Sean f y g funciones derivables y 2p-periódicas con desarrollos exponenciales de Fourier:

$$f(t) = \sum_{n=-\infty}^{\infty} c_n e^{in\omega t}$$
 $g(t) = \sum_{n=-\infty}^{\infty} d_n e^{in\omega t}$, $\omega = \frac{\pi}{p}$

Probar que la función $h(t)=\frac{1}{2p}\int_{-p}^pf(t-x)g(x)dx$ también es derivable y 2p- periódica y se puede expresar como:

$$h(t) = \sum_{n = -\infty}^{\infty} c_n d_n e^{in\omega t}$$

- **27.** a) Probar que la serie $\frac{1}{2} + \sum_{n=1}^{\infty} \cos(nx)$ no es la serie de Fourier de ninguna función.
 - b) Calcular la n-ésima suma parcial de esta serie.
- **28.** Sean f(x) = x en $(-\pi, \pi)$ 2π -periódica y g(x) = 1 en $(-\pi, \pi)$, también 2π -periódica.
 - a) ¿Qué relación hay entre f y g?
 - b) Calcular las series de Fourier de f y de g.
 - c) Calcular la serie obtenida por diferenciación término a término de la serie de Fourier de f. ¿Es la serie de Fourier de g? ¿Converge?
- **29.** Dadas $f(x) = \operatorname{sen} x \ g(x) = \cos x \ \operatorname{en} \ (0, \pi)$, sean:

$$S(x) = \frac{2}{\pi} - \frac{4}{\pi} \sum_{n \ge 1} \frac{\cos(2nx)}{4n^2 - 1}$$

$$T(x) = \frac{8}{\pi} \sum_{n \ge 1} \frac{n \cdot \sin(2nx)}{4n^2 - 1}$$

los desarrollos de Fourier en serie de cosenos y senos, respectivamente, de f y de g.

- a) ¿Se puede afirmar que f(x) = S(x) y que g(x) = T(x)?
- **b)** ¿Es lícito obtener T(x) derivando término a término S(x)?
- c) ¿Es lícito obtener S(x) derivando término a término T(x)?

Sugerencia: graficar las extesiones de f y de g a \mathbb{R} .

30. Sea $g: \mathbb{R} \to \mathbb{R}$ 2π -periódica dada por:

$$g(x) = \begin{cases} -\pi - x & , -\pi \le x < -\frac{\pi}{2} \\ x & , -\frac{\pi}{2} \le x < \frac{\pi}{2} \\ \pi - x & , \frac{\pi}{2} \le x < \pi \end{cases}$$

Sea $f(x) = \sum_{n \ge 1} b_n \operatorname{sen}((2n+1)x)$ convergente para todo $x \in \mathbb{R}$. Probar que si f(x) = g(x) para todo $x \in (0, \pi)$, entonces f = g.

31. Sean $f, g : \mathbb{R} \to \mathbb{R}$ 2π -periódicas dadas por:

$$f(x) = x$$
 en $[0, 2\pi)$ y $g(x) = x$ en $[-\pi, \pi)$

a) Calcular los desarrollos en serie trigonométrica de Fourier de f y de g y estudiar la convergencia puntual de dichas series.

- **b)** Determinar $h(x) = \pi 4\sum_{n\geq 0} \frac{\operatorname{sen}((2n+1)x)}{2n+1}$ y comprobar el resultado calculando los coeficientes de Fourier de h.
- **32.** Desarrollar sen 5t en serie trigonométrica de Fourier sin calcular expresamente los coeficientes.

Sugerencia: escribir el seno en términos de la exponencial y usar el binomio de Newton.

33. a) Desarrollar en serie de Fourier las funciones:

$$f(t) = e^{r\cos t}\cos(r\operatorname{sen}t)$$
 $g(t) = e^{r\cos t}\operatorname{sen}(r\operatorname{sen}t)$

- **b)** Idem para $h(t) = \frac{1}{1 re^{it}}$, 0 < r < 1.
- ${\bf 34.}\,$ Encontrar los valores $A_1,\,A_2$ y A_3 de modo que la función

$$y = A_1 \operatorname{sen}(\frac{\pi x}{2}) + A_2 \operatorname{sen}(\pi x) + A_3 \operatorname{sen}(\frac{3\pi}{2x})$$

sea la mejor aproximación (en media cuadrática) de la función f(x) = 1 en (0,2).

35. Sea $F: \mathbb{R}^3 \to \mathbb{R}$ dada por $F(a,b,c) = \int_{-\pi}^{\pi} (x^2 - a - b \cos x - c \sin x)^2 dx$. Determinar el punto donde F alcanza su mínimo.