Análisis Armónico Práctica 12

1. Probar el teorema de Weiner siguiente:

Sean $f \in L^2(\mathbb{R})$ y T_t el operador traslación en $t \in \mathbb{R}$ $(T_t f(x) = f(x - t))$. Entonces las combinaciones lineales finitas del conjunto $\{T_t f\}_{t \in \mathbb{R}}$ son densas en $L^2(\mathbb{R})$ si, y sólo si $\widehat{f} \neq 0$ a. e.

2. (a) Supongamos que $\varphi \in L^2(\mathbb{R})$ satisface que existen A, B > 0 tales que

$$A \sum_{|k| \le N} |c_k|^2 \le \left\| \sum_{|k| \le N} c_k \varphi(x - k) \right\|_2^2 \le B \sum_{|k| \le N} |c_k|^2$$

para cada $N \ge 0$ y para cada elección de escalares $c_{-N}, \dots, c_0, \dots, c_N \in \mathbb{R}$.

Probar que $A \leq \sum_{k \in \mathbb{Z}} |\widehat{\varphi}(w+k)|^2 \leq B$ a. e. w.

(b) Si \mathbb{V} es la clausura del subespacio gen $\{T_k\varphi\}_{k\in\mathbb{Z}}$, hallar una función $\varphi_0\in\mathbb{V}$ tal que $\{T_k\varphi_0\}_{k\in\mathbb{Z}}$ sea una base ortonormal de \mathbb{V} .

(Sugerencia: usar que,

 $\{T_k\varphi\}_{k\in\mathbb{Z}}$ es un sist. ortonormal si, y sólo si, $\sum |\widehat{\varphi}(w+k)|^2=1$ a. e.)

Entregar a Cristina o Lisi la próxima semana.