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1. L1 Fourier transform

If f ∈ L1(Rn) then its Fourier transform is f̂ : Rn → C defined by

f̂(ξ) =

∫
e−2πix·ξf(x)dx.

More generally, let M(Rn) be the space of finite complex-valued measures on Rn with
the norm

‖µ‖ = |µ|(Rn),

where |µ| is the total variation. Thus L1(Rn) is contained in M(Rn) via the identification
f → µ, dµ = fdx. We can generalize the definition of Fourier transform via

µ̂(ξ) =

∫
e−2πix·ξdµ(x).

Example 1 Let a ∈ Rn and let δa be the Dirac measure at a, δa(E) = 1 if a ∈ E and

δa(E) = 0 if a 6∈ E. Then δ̂a(ξ) = e−2πia·ξ.

Example 2 Let Γ(x) = e−π|x|
2
. Then

Γ̂(ξ) = e−π|ξ|
2

. (1)

Proof The integral in question is

Γ̂(ξ) =

∫
e−2πix·ξe−π|x|

2

dx.

Notice that this factors as a product of one variable integrals. So it suffices to prove (1)
when n = 1. For this we use the formula for the integral of a Gaussian:

∫∞
−∞ e

−πx2
dx = 1.

It follows that ∫ ∞
−∞

e−2πixξe−πx
2

dx =

∫ ∞
−∞

e−π(x−iξ)2

dx · e−πξ2

=

∫ ∞−iξ
−∞−iξ

e−πx
2

dx · e−πξ2

=

∫ ∞
−∞

e−πx
2

dx · e−πξ2

= e−πξ
2

,
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where we used contour integration at the next to last line. �

There are some basic estimates for the L1 Fourier transform, which we state as Propo-
sitions 1 and 2 below. Consideration of Example 1 above shows that in complete generality
not that much more can be said.

Proposition 1.1 If µ ∈M(Rn) then µ̂ is a bounded function, indeed

‖µ̂‖∞ ≤ ‖µ‖M(Rn
)
. (2)

Proof For any ξ,

|µ̂(ξ)| = |
∫
e−2πix·ξdµ(x)|

≤
∫
|e−2πix·ξ| d|µ|(x)

= ‖µ‖.

�

Proposition 1.2 If µ ∈M(Rn) then µ̂ is a continuous function.

Proof Fix ξ and consider

µ̂(ξ + h) =

∫
e−2πix·(ξ+h)dµ(x).

As h → 0 the integrands converge pointwise to e−2πix·ξ. Since all the integrands have
absolute value 1 and |µ|(Rn) < ∞, the result follows from the dominated convergence
theorem. �

We now list some basic formulas for the Fourier transform; the ones listed here are
roughly speaking those that do not involve any differentiations. They can all be proved by
using the formula ea+b = eaeb and appropriate changes of variables. Let f ∈ L1, τ ∈ Rn,
and let T be an invertible linear map from Rn to Rn.

1. Let fτ (x) = f(x− τ). Then

f̂τ (ξ) = e−2πiτ ·ξf̂(ξ). (3)

2. Let eτ (x) = e2πix·τ . Then

êτf(ξ) = f̂(ξ − τ). (4)
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3. Let T−t be the inverse transpose of T . Then

f̂ ◦ T = |det(T )|−1f̂ ◦ T−t. (5)

4. Define f̃(x) = f(−x). Then
ˆ̃f = f̂ . (6)

We note some special cases of 3. If T is an orthogonal transformation (i.e. TT t is the

identity map) then f̂ ◦ T = f̂ ◦ T , since det(T ) = ±1. In particular, this implies that if f
is radial then so is f̂ , since orthogonal transformations act transitively on spheres. If T is
a dilation, i.e. Tx = r · x for some r > 0, then 3. says that the Fourier transform of the
function f(rx) is the function r−nf̂(r−1ξ). Replacing r with r−1 and multiplying through
by r−n, we see that the reverse formula also holds: the Fourier transform of the function
r−nf(r−1x) is the function f̂(rξ).

There is a general principle that if f is localized in space, then f̂ should be smooth,
and conversely if f is smooth then f̂ should be localized. We now discuss some simple
manifestations of this. Let D(x, r) = {y ∈ Rn : |y − x| < r}.

Proposition 1.3 Suppose that µ ∈M(Rn) and supp µ is compact. Then µ̂ is C∞ and

Dαµ̂ = ((−2πix)αµ)̂ . (7)

Further, if suppµ ⊂ D(0, R) then

‖Dαµ̂‖∞ ≤ (2πR)|α|‖µ‖. (8)

We are using multiindex notation here and will do so below as well. Namely, a multi-
index is a vector α ∈ Rn whose components are nonnegative integers. If α is a multiindex
then by definition

Dα =
∂α1

∂xα1
1

. . .
∂αn

∂xαnn
,

xα = Πn
j=1x

αj
j .

The length of α, denoted |α|, is
∑

j αj . One defines a partial order on multiindices via

α ≤ β ⇔ αi ≤ βi for each i,

α < β ⇔ α ≤ β and α 6= β.

Proof of Proposition 1.3 Notice that (8) follows from (7) and Proposition 1 since the

norm of the measure (2πix)αµ is ≤ (2πR)|α|‖µ‖.
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Furthermore, for any α the measure (2πix)αµ is again a finite measure with compact
support. Accordingly, if we can prove that µ̂ is C1 and that (7) holds when |α| = 1, then
the lemma will follow by a straightforward induction.

Fix then a value j ∈ {1, . . . , n}, and let ej be the jth standard basis vector. Also fix
ξ ∈ Rn, and consider the difference quotient

∆(h) =
µ̂(ξ + hej)− µ̂(ξ)

h
. (9)

This is equal to ∫
e−2πihxj − 1

h
e−2πiξ·xdµ(x). (10)

As h→ 0, the quantity
e−2πihxj − 1

h

converges pointwise to −2πixj . Furthermore, | e
−2πihxj−1

h
| ≤ 2π|xj | for each h. Accordingly,

the integrands in (10) are dominated by |2πxj |, which is a bounded function on the support
of µ. It follows by the dominated convergence theorem that

lim
h→0

∆(h) =

∫
lim
h→0

e−2πihxj − 1

h
e−2πiξ·xdµ(x),

which is equal to ∫
−2πixje

−2πiξ·xdµ(x).

This proves the formula (7) when |α| = 1. Formula (7) and Proposition 2 imply that µ̂ is
C1. �

Remark The estimate (8) is tied to the support of µ. However, the fact that µ̂ is C∞

and the formula (7) are still valid whenever µ has enough decay to justify the differentia-
tions under the integral sign. For example, they are valid if µ has moments of all orders,
i.e.

∫
|x|Nd|µ|(x) <∞ for all N .

The estimate (2) can be seen as justification of the idea that if µ is localized then µ̂
should be smooth. We now consider the converse statement, µ smooth implies µ̂ localized.

Proposition 1.4 Suppose that f is CN and that Dαf ∈ L1 for all α with 0 ≤ |α| ≤ N .
Then

D̂αf(ξ) = (2πiξ)αf̂(ξ) (11)

when |α| ≤ N and furthermore

|f̂(ξ)| ≤ C(1 + |ξ|)−N (12)

for a suitable constant C.
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The proof is based on an integration by parts which is most easily justified when f has
compact support. Accordingly, we include the following lemma before giving the proof.

Let φ : Rn → R be a C∞ function with the following properties (4. is actually
irrelevant for present purposes):

1. φ(x) = 1 if |x| ≤ 1
2. φ(x) = 0 if |x| ≥ 2
3. 0 ≤ φ ≤ 1.
4. φ is radial.

Define φk(x) = φ(x
k
); thus φk is similar to φ but lives on scale k instead of 1. If

α is a multiindex, then there is a constant Cα such that |Dαφk| ≤ Cα
k|α|

uniformly in k.
Furthermore, if α 6= 0 then the support of Dαφ is contained in the region k ≤ |x| ≤ 2k.

Lemma 1.5 If f is CN , Dαf ∈ L1 for all α with |α| ≤ N and if we let fk = φkf then
limk→∞ ‖Dαfk −Dαf‖1 = 0 for all α with |α| ≤ N .

Proof It is obvious that

lim
k→∞
‖φkDαf −Dαf‖1 = 0,

so it suffices to show that

lim
k→∞
‖Dα(φkf)− φkDαf‖1 = 0. (13)

However, by the Leibniz rule

Dα(φkf)− φkDαf =
∑

0<β≤α
cβD

α−βfDβφk,

where the cβ’s are certain constants. Thus

‖Dα(φkf)− φkDαf‖1 ≤ C
∑

0<β≤α
‖Dβφk‖∞‖Dα−βf‖L1({x:|x|≥k})

≤ Ck−1
∑

0<β≤α
‖Dα−βf‖L1({x:|x|≥k})

The last line clearly goes to zero as k →∞. There are two reasons for this (either would
suffice): the factor k−1, and the fact that the L1 norms are taken only over the region
|x| ≥ k. �
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Proof of Proposition 1.4 If f is C1 with compact support, then by integration by parts
we have ∫

∂f

∂xj
(x)e−2πix·ξdx = 2πiξj

∫
e−2πix·ξf(x)dx,

i.e. (11) holds when |α| = 1. An easy induction then proves (11) for all α provided that
f is CN with compact support.

To remove the compact support assumption, let fk be as in Lemma 1.5. Then (11)

holds for fk. Now we pass to the limit as k → ∞. On the one hand D̂αfk converges
uniformly to D̂αf as k → ∞ by Lemma 1.5 and Proposition 1.1. On the other hand f̂k
converges uniformly to f̂ , so (2πiξ)αf̂k converges to (2πiξ)αf̂ pointwise. This proves (11)
in general.

To prove (12), observe that (11) and Proposition 1 imply that ξαf̂ ∈ L∞ if |α| ≤ N .
On the other hand, it is easy to estimate

C−1
N (1 + |ξ|)N ≤

∑
|α|≤N

|ξα| ≤ CN(1 + |ξ|)N , (14)

so (12) follows. �

Together with (14), let us note the inequality

1 + |x| ≤ (1 + |y|)(1 + |x− y|), x, y ∈ Rn (15)

which will be used several times below.

2. Schwartz space

The Schwartz space S is the space of functions f : Rn → C such that:

1. f is C∞,
2. xαDβf is a bounded function for each pair of multiindices α and β.

For f ∈ S we define
‖f‖αβ = ‖xαDβf‖∞.

It is possible to see that S with the family of norms ‖ · ‖αβ is a Frechet space, but we
don’t discuss such questions here (see [27]). However, we define a notion of sequential
convergence in S:

A sequence {fk} ⊂ S converges in S to f ∈ S if limk→∞ ‖fk − f‖αβ = 0 for each pair
of multiindices α and β.

Examples 1. Let C∞0 be the C∞ functions with compact support. Then C∞0 ⊂ S.
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Namely, to prove that xαDβf is bounded, just note that if f ∈ C∞0 then Dβf is a
continuous function with compact support, hence bounded, and that xα is a bounded
function on the support of Dβf .

2. Let f(x) = e−π|x|
2
. Then f ∈ S.

For the proof, notice that if p(x) is a polynomial, then any first partial derivative
∂
∂xj

(p(x)e−π|x|
2
) is again of the form q(x)e−π|x|

2
for some polynomial q. It follows by

induction that each Dβf is a polynomial times f for each β. Hence xαDβf is a polynomial
times f for each α and β. This implies using L’Hospital’s rule that xαDβf is bounded for
each α and β.

3. The following functions are not in S: fN (x) = (1 + |x|2)−N for any given N ,
and g(x) = e−π|x|

2
sin(eπ|x|

2
). Roughly, although fN decays rapidly at ∞, it does not

decay rapidly enough, whereas g decays rapidly enough but its derivatives do not decay.
Detailed verification is left to reader.

We now discuss some simple properties of S, then some which are slightly less simple.

I. S is closed under differentiations and under multiplication by polynomials. Fur-
thermore, these operations are continuous on S in the sense that they preserve sequential
convergence. Also f, g ∈ S implies fg ∈ S.

Proof Let f ∈ S. If γ is a multiindex, then xαDβ(Dγ)f = xαDβ+γf , which is bounded
since f ∈ S. So Dγf ∈ S.

By the Leibniz rule, xαDβ(xγf) is a finite sum of terms each of which is a constant
multiple of

xαDδ(xγ)Dβ−δf

for some δ ≤ β. Furthermore, Dδ(xγ) is a constant multiple of xγ−δ if δ ≤ γ, and otherwise
is zero. Thus xαDβ(xγf) is a linear combination of monomials times derivatives of f , and
is therefore bounded. So xγf ∈ S.

The continuity statements follow from the proofs of the closure statements; we will
normally omit these arguments. As an indication of how they are done, let us show that
if γ is a multiindex then f → Dγf is continuous. Suppose that fn → f in S. Fix a pair
of multiindices α and β. Applying the definition of convergence with the multiindices α
and β + γ, we have

lim
n→∞

‖xαDβ+γ(fn − f)‖∞ = 0.

Equivalently,
lim
n→∞

‖xαDβ(Dγfn −Dγf)‖∞ = 0

which says that Dγfn converges to Dγf .
The last statement (that S is an algebra) follows readily from the product rule and

the definitions. �
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II. The following alternate definitions of S are often useful.

f ∈ S ⇔ (1 + |x|)NDβf is bounded for each N and β, (16)

f ∈ S ⇔ lim
x→∞

xαDβf = 0 for each α and β. (17)

Indeed, (16) follows from the definition and (14). The backward implication in (17) is
trivial, while the forward implication follows by applying the definition with α replaced
by appropriate larger multiindices, e.g. α + ej for arbitrary j ∈ {1, . . . , n}.

Proposition 2.1 C∞0 is dense in S, i.e. for any f ∈ S there is a sequence {fk} ⊂ C∞0
with fk → f in S.

Proof This is almost the same as the proof of Lemma 1.5. Namely, define φk as there
and consider fk = φkf , which is evidently in C∞0 . We must show that

xαDβ(φkf)→ xαDβf

uniformly as k →∞. For this, we estimate

‖xαDβ(φkf)− xαDβf‖∞ ≤ ‖φkxαDβf − xαDβf‖∞ + ‖xα(Dβ(φkf)− φkDβf)‖∞.

The first term is bounded by sup|x|≥k |xαDβf | and therefore goes to zero as k → ∞ by
(17). The second term is estimated using the Leibniz rule by

C
∑
γ<β

‖xαDγf‖∞‖Dβ−γφk‖∞. (18)

Since f ∈ S and ‖Dβ−γφk‖ ≤ C
k

, the expression (18) goes to zero as k →∞. �

There is a stronger density statement which is sometimes needed. Define a C∞0 tensor
function to be a function f : Rn → C of the form

f(x) =
∏
j

φj(xj),

where each φj ∈ C∞0 (R).

Proposition 2.1′ Linear combinations of C∞0 tensor functions are dense in S.

Proof In view of Proposition 2.1 it suffices to show that if f ∈ C∞0 then there is a
sequence {gk} such that:

1. Each gk is a C∞0 tensor function.
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2. The supports of the gk are contained in a fixed compact set E which is independent
of k.

3. Dαgk converges uniformly to Dαf for each α.

To construct {gk}, we use the fact (a basic fact about Fourier series) that if f is a C∞

function in Rn which is 2π-periodic in each variable then f can be expanded in a series

f(θ) =
∑
ν∈Zn

aνe
iν·θ

where the {aν} satisfy ∑
ν

(1 + |ν|)N |aν | <∞

for each N . Considering partial sums of the Fourier series, we therefore obtain a sequence
of trigonometric polynomials pk such that Dαpk converges uniformly to Dαf for each α.

In constructing {gk} we can assume that x ∈ suppf implies |xj | ≤ 1, say, for each j -
otherwise we work with f(Rx) for suitable fixed R instead and undo the rescaling at the
end. Let φ be a C∞0 function of one variable which is equal to 1 on [−1, 1] and vanishes
outside [−2, 2]. Let f̃ be the function which is equal to f on [−π, π] × . . .× [−π, π] and
is 2π-periodic in each variable. Then we have a sequence of trigonometric polynomials pk
such that Dαpk converges uniformly to Dαf̃ for each α. Let gk(x) = Πn

j=1φ(xj) · pk(x).
Then gk clearly satisfies 1. and 2, and an argument with the product rule as in Lemma
1.5 and Proposition 2.2 will show that {gk} satisfies 3. The proof is complete. �

The next proposition is an alternate definition of S using L1 instead of L∞ norms.

Proposition 2.2 A C∞ function f is in S iff the norms

‖xαDβf‖1

are finite for each α and β. Furthermore, a sequence {fk} ⊂ S converges in S to f ∈ S iff

lim
k→∞
‖xαDβ(fk − f)‖1 = 0

for each α and β.

Proof We only prove the first part; the equivalence of the two notions of convergence
follows from the proof and is left to the reader.

First suppose that f ∈ S. Fix α and β. Let N = |α| + n + 1. Then we know that
(1 + |x|)NDβf is bounded. Accordingly,

‖xαDβf‖1 ≤ ‖(1 + |x|)NDβf‖∞‖xα(1 + |x|)−N‖1

< ∞
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using that the function (1 + |x|)−n−1 is integrable.
For the converse, we first make a definition and state a lemma. If f : Rn → ∞ is Ck

and if x ∈ Rn then
∆f
k(x)

def
=
∑
|α|=k

|Dαf(x)|.

We denote D(x, r) = {y : |x − y| ≤ r}. We also now start to use the notation x . y to
mean that x ≤ Cy where C is a fixed but unspecified constant.

Lemma 2.2’ Suppose f is a C∞ function. Then for any x

|f(x)| .
∑

0≤j≤n+1

‖∆f
j ‖L1(D(x,1)).

This is contained in Lemma A2 which is stated and proved at the end of the section.
To finish the proof of Proposition 2.2, we apply the preceding lemma to Dβf . This

gives

|Dβf(x)| .
∑

|γ|≤|β|+n+1

∫
D(x,1)

|Dγf(y)|dy,

therefore

(1 + |x|)N |Dβf(x)| . (1 + |x|)N
∑

|γ|≤|β|+n+1

∫
D(x,1)

|Dγf(y)|dy

.
∑

|γ|≤|β|+n+1

∫
D(x,1)

(1 + |y|)N |Dγf(y)|dy,

where we used the elementary inequality

1 + |x| ≤ 2 min
y∈D(x,1)

(1 + |y|).

It follows that
‖(1 + |x|)N |Dβf‖∞ .

∑
|γ|≤|β|+n+1

‖(1 + |x|)NDγf‖1,

and then Proposition 2.2 follows from (14). �

Theorem 2.3 If f ∈ S then f̂ ∈ S. Furthermore, the map f → f̂ is continuous from S
to S.

Proof As usual we explicitly prove only the first statement.

If f ∈ S then f ∈ L1, so f̂ is bounded. Thus if f ∈ S, then D̂αxβf is bounded for any
given α and β, since Dαxβf is again in S. However, Propositions 1.3 and 1.4 imply that

D̂αxβf(ξ) = (2πi)|α|(−2πi)−|β|ξαDβ f̂(ξ)
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so ξαDβf̂ is again bounded, which means that f̂ ∈ S. �

Appendix: pointwise Poincare inequalities

This is a little more technical than the preceding and we will omit some details.
We prove a frequently used pointwise estimate for a function in terms of integrals of its
gradient, which plays a similar role that the mean value inequality plays in calculus. Then
we prove a generalization involving higher derivatives which includes Lemma 2.3. Let ω
be the volume of the unit ball.

Lemma A1 Suppose that f is C1. Then

|f(x)− 1

ω

∫
D(x,1)

f(y)dy| .
∫
D(x,1)

|∇f(y)|
|x− y|n−1

dy.

Proof Applying the fundamental theorem of calculus to the function

t→ f(x+ t(y − x))

shows that

|f(y)− f(x)| ≤ |x− y|
∫ 1

0

|∇f(x+ t(y − x))|dt.

Integrate this with respect to y over D(x, 1) and divide by ω. Thus

|f(x)− 1

ω

∫
D(x,1)

f(y)dy| ≤ 1

ω

∫
D(x,1)

|f(x)− f(y)|dy

.
∫
D(x,1)

|x− y|
∫ 1

0

|∇f(x+ t(y − x))|dtdy

=

∫ 1

0

∫
D(x,1)

|x− y||∇f(x+ t(y − x))|dydt. (19)

Make the change of variables z = x+ t(y − x), and then reverse the order of integration
again. This leads to

(19) =

∫ 1

t=0

∫
D(x,t)

t−1|z − x||∇f(z)|dz
tn
dt

=

∫
D(x,1)

|z − x||∇f(z)|
∫ 1

t=|z−x|
t−(n+1)dtdz

.
∫
D(x,1)

|x− z|−(n−1)|∇f(z)|dz

as claimed.
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Lemma A.2 Suppose that f is Ck. Then

|f(x)| .
∑

0≤j<k
‖∆f

j ‖L1(D(x,1)) +


∫
D(x,1)

|x− y|−(n−k)∆f
k(y)dy if 1 ≤ k ≤ n− 1,∫

D(x,1)
log 1

|x−y|∆
f
n(y)dy if k = n,

‖∆f
n+1‖L1(D(x,1)) if k = n+ 1.

(20)

The case k = n+ 1 is Lemma 2.2’.

Proof The case k = 1 follows immediately from Lemma A.1, so it has already been
proved. To pass to general k we use induction based on the inequalities (here a > 0, b >
0, |z − x| ≤ constant)

∫
y∈D(x,C)

|x− y|−(n−a)|z − y|−(n−b)dy ≤


C|x− z|−(n−a−b) if a+ b < n,
log C

|z−x| if a+ b = n,

C if a+ b > n,

(21)

and ∫
y∈D(x,C)

|x− y|−(n−1) log
1

|z − y|dy ≤ C (22)

In fact, (21) may be proved by subdividing the region of integration in the three
regimes |y− x| ≤ 1

2
|z− x|, |y− z| ≤ 1

2
|z− x| and “the rest”, and noting that on the third

regime the integrand is comparable to |y − x|−(2n−a−b). (22) may be proved similarly.
We now prove (20) by induction on k. We have done the case k = 1. Suppose that

2 ≤ k ≤ n− 1 and that the cases up to and including k − 1 have been proved. Then

|f(x)| .
∑
j≤k−2

‖∆f
j ‖L1(D(x,1)) +

∫
D(x,1)

|x− y|−(n−k+1)∆f
k−1(y)dy

.
∑
j≤k−2

‖∆f
j ‖L1(D(x,1)) +

∫
D(x,1)

|x− y|−(n−k+1)

∫
D(y,1)

∆f
k−1(z)dzdy

+

∫
D(x,1)

|x− y|−(n−k+1)

∫
D(y,1)

|y − z|−(n−1)∆f
k(z)dzdy

.
∑
j≤k−1

‖∆f
j ‖L1(D(x,2)) +

∫
D(x,2)

|x− z|−(n−k)∆f
k(z)dz.

For the first two inequalities we used (20) with k replaced by k − 1 and 1 respectively,
and for the last inequality we reversed the order of integration and used (21). The disc
D(x, 2) can be replaced by D(x, 1) using rescaling, so we have proved (20) for k ≤ n− 1.

To pass from k = n− 1 to k = n we argue similarly using the second case of (21), and
to pass from k = n to k = n+ 1 we argue similarly using (22). �

3. Fourier inversion and Plancherel
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Convolution of φ and f is defined as follows:

φ ∗ f(x) =

∫
φ(y)f(x− y)dy (23)

We assume the reader has seen this definition before but will summarize some facts,
mostly without giving the proofs. There is an issue of the appropriate conditions on φ
and f under which the integral (23) makes sense. We recall the following.

1. If φ ∈ L1 and f ∈ Lp, 1 ≤ p ≤ ∞, then the integral (23) is an absolutely convergent
Lebesgue integral for a.e. x and

‖φ ∗ f‖p ≤ ‖φ‖1‖f‖p. (24)

2. If φ is a continuous function with compact support and f ∈ L1
loc, then the integral

(23) is an absolutely convergent Lebesgue integral for every x and φ ∗ f is continuous.
3. If φ ∈ Lp and f ∈ Lp′ , 1

p
+ 1

p′ = 1, then the integral (23) is an absolutely convergent
Lebesgue integral for every x, and φ ∗ f is continuous. Furthermore,

‖φ ∗ f‖∞ ≤ ‖φ‖p‖f‖p′. (25)

The absolute convergence of (23) in 2. is trivial, and (25) follows from Cauchy-
Schwarz. Continuity then follows from the dominated convergence theorem. 1. is obvious
when p = ∞. It is also true for p = 1, by Fubini’s theorem and a change of variables.
The general case follows by interpolation, see the Riesz-Thorin theorem in Section 4.

In any of the above situations convolution is commutative: the integral defining f ∗ φ
is again convergent for the same values of x, and f ∗ φ = φ ∗ f . This follows by making
the change of variables y → x− y. Notice also that

supp(φ ∗ f) ⊂ suppφ+ suppf,

where the sum E + F means {x+ y : x ∈ E, y ∈ F}.
In many applications the function φ is fixed and very “nice”, and one considers con-

volution as an operator
f → φ ∗ f.

Lemma 3.1 If φ ∈ C∞0 and f ∈ L1
loc then φ ∗ f is C∞ and

Dα(φ ∗ f) = (Dαφ) ∗ f. (26)

Proof It is enough to prove that φ ∗ f is C1 and (26) holds for multiindices of length
1, since one can then use induction. Fix j and consider difference quotients

d(h) =
1

h

(
(φ ∗ f)(x+ hej)− (φ ∗ f)(x)

)
.
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Using (23) and commutativity of convolution, we can rewrite this as

d(h) =

∫
1

h
(φ(x+ hej − y)− φ(x− y))f(y)dy.

The quotients

Ah(y) =
1

h
(φ(x+ hej − y)− φ(x− y))

are bounded by ‖ ∂φ
∂xj
‖∞ by the mean value theorem. For fixed x and for |h| ≤ 1, the

support of Ah is contained in the fixed compact set E = D(x, 1)+ suppφ. Thus the inte-
grands Ahf are dominated by the L1 function ‖ ∂φ

∂xj
‖∞χE|f |. The dominated convergence

theorem implies

lim
h→0

d(h) =

∫
f(y) lim

h→0
Ah(y)dy =

∫
f(y)

∂φ

∂xj
(x− y)dy.

This proves (26) (when |α| = 1). The continuity of the partials then follows from 2.
above. �

Corollary 3.1’ If f, g ∈ S then f ∗ g ∈ S.

Proof By Lemma 3.1 it suffices to show that if (1 + |x|)Nf(x) and (1 + |x|)Ng(x)
are bounded for every N then so is (1 + |x|)Nf ∗ g(x). This follows by writing out the
definitions and using (15); the details are left to the reader. �

Convolution interacts with the Fourier transform as follows: Fourier transform con-
verts convolution to ordinary pointwise multiplication. Thus we have the following for-
mulas:

f̂ ∗ g = f̂ ĝ, f, g ∈ L1, (27)

f̂ g = f̂ ∗ ĝ, f, g ∈ S. (28)

(27) follows from Fubini’s theorem and is in many textbooks; the proof is left to the
reader. (28) then follows easily from the inversion theorem, so we defer the proof until
after Theorem 3.4.

Let φ ∈ S, and assume that
∫
φ = 1. Define φε(x) = ε−nφ(ε−1x). The family of

functions {φε} is called an approximate identity. Notice that
∫
φε = 1 for all ε. Thus

one can regard the φε as roughly convergent to the Dirac mass δ0 as ε → 0. Indeed, the
following fact is basic but quite standard; see any reasonable book on real analysis for the
proof.

Lemma 3.2 Let φ ∈ S and
∫
φ = 1. Then:

1. If f is a continuous function which goes to zero at ∞ then φε ∗ f → f uniformly as
ε→ 0.

2. If f ∈ Lp, 1 ≤ p <∞ then φε ∗ f → f in Lp as ε→ 0.

14



Let us note the following corollary:

Lemma 3.3 Suppose f ∈ L1
loc. Then there is a fixed sequence {gk} ⊂ C∞0 such that if

p ∈ [1,∞) and f ∈ Lp, then gk → f in Lp. If f is continuous and goes to zero at∞, then
gk → f uniformly.

The reason for stating the lemma in this way is that one sometimes has to deal with
several notions of convergence simultaneously, e.g., L1 and L2 convergence, and it is
convenient to be able to approximate f in both norms simultaneously.

Proof Let ψ ∈ C∞0 ,
∫
ψ = 1, ψ ≥ 0, and let φ be as in Lemma 1.5. Fix a sequence

εk ↓ 0. Let gk(x) = φ(x
k
) · (ψεk ∗ f).

If f ∈ Lp, then for large k the quantity ‖ψεk ∗ f‖Lp(|x|≥k) is bounded by ‖f‖Lp(|x|≥k−1)

using (24) and that suppψεk is contained in D(0, 1). Accordingly, ‖gk −ψεk ∗ f‖p → 0 as
k → ∞. On the other hand, ‖ψεk ∗ f − f‖p → 0 by Lemma 3.2. If f is continuous and
goes to zero at ∞, then one can argue the same way using the first part of Lemma 3.2.
Smoothness of gk follows from Lemma 3.1, so the proof is complete. �

Theorem 3.4 (Fourier inversion) Suppose that f ∈ L1, and assume that f̂ is also in
L1. Then for a.e. x,

f(x) =

∫
f̂(ξ)e2πiξ·xdξ. (29)

Equivalently, ̂̂
f(x) = f(−x) for a.e. x. (30)

The proof uses Lemma 3.2 and also the following facts:

A. The gaussian Γ(x) = e−π|x|
2

satisfies Γ̂ = Γ, and therefore also satisfies (30). So at
any rate there is one function f for which Theorem 3.4 is true. In fact this implies that
there are many such functions. Indeed, if we form the functions

Γε(x) = e−πε
2|x|2,

then we have

Γ̂ε(ξ) = ε−ne
−π |ξ|

2

ε2 . (31)

Applying this again with ε replaced by ε−1, one can verify that Γε satisfies (30). See the
discussion after formula (5).

B. The duality relation for the Fourier transform, i.e., the following lemma.
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Lemma 3.5 Suppose that µ ∈M(Rn) and ν ∈M(Rn). Then∫
µ̂dν =

∫
ν̂dµ. (32)

In particular, if f, g ∈ L1, then∫
f̂(x)g(x)dx =

∫
f(x)ĝ(x)dx.

Proof This follows from Fubini’s theorem:∫
µ̂dν =

∫ ∫
e−2πiξ·xdµ(x)dν(ξ)

=

∫ ∫
e−2πiξ·xdν(ξ)dµ(x)

=

∫
ν̂dµ.

�

Proof of Theorem 3.4 Consider the integral in (29) with a damping factor included:

Iε(x) =

∫
f̂(ξ)e−πε

2|ξ|2e2πiξ·xdξ. (33)

We evaluate the limit as ε→ 0 in two different ways.

1. As ε→ 0, Iε(x)→
∫
f̂(ξ)e2πiξ·xdξ for each fixed x. This follows from the dominated

convergence theorem, since f̂ ∈ L1.

2. With x and ε fixed, define g(ξ) = e−πε
2|ξ|2e2πiξ·x. Thus

Iε(x) =

∫
f(y)ĝ(y)dy

by Lemma 3.5. On the other hand, we can evaluate ĝ using the fact that g(ξ) = ex(ξ)Γε(ξ)
and (4), (31). Thus

ĝ(y) = Γ̂ε(y − x) = Γε(x− y),

where Γε(y) = ε−nΓ( yε) is an approximate identity as in Lemma 3.2, and we have used
that Γ is even.

Accordingly,
Iε = f ∗ Γε,

and we conclude by Lemma 3.2 that

Iε → f

16



in L1 as ε→ 0.
Summing up, we have seen that the functions Iε converge pointwise to

∫
f̂(ξ)e2πix·ξdξ,

and converge in L1 to f . This is only possible when (29) holds. �

Corollaries of the inversion theorem
The first corollary below is not really a corollary, but a reformulation of the proof

without the assumption that f̂ ∈ L1. This is the form the inversion theorem takes
for general f . Notice that the integrals Iε are well defined for any f ∈ L1, since the
Gaussian e−πε

2|x|2 is integrable for each fixed ε. Corollary 3.6 is often stated as “the
Fourier transform of f is Gauss-Weierstrass summable to f”, and can be compared to the
theorem on Cesaro summability for Fourier series.

Corollary 3.6 1. Suppose f ∈ L1 and define Iε(x) via (33). Then Iε → f in L1 as
ε→ 0.

2. If 1 < p <∞ and additionally f ∈ Lp, then Iε → f in Lp as ε→ 0. If instead f is
continuous and goes to zero at ∞, then Iε → f uniformly.

Proof This follows from the preceding argument showing that Iε = Γε ∗ f , together
with Proposition 3.2. �

Corollary 3.7 If f ∈ L1 and f̂ = 0, then f = 0.

This is immediate from Theorem 3.4. �

Theorem 3.8 The Fourier transform maps S onto S.

Proof Given f ∈ S, let F (x) = f(−x) and let g = F̂ . Then g ∈ S by Theorem 2.3,
and (30) implies

ĝ(x) =
ˆ̂
F (x) = F (−x) = f(x)

�

Let us also prove formula (28). Let f, g ∈ S. Then

̂̂f ∗ ĝ(−x) =
ˆ̂
f(−x)ˆ̂g(−x)

= f(x)g(x)

by (27) and Theorem 3.4. Using Theorem 3.4 again, it follows that f̂ ∗ ĝ = f̂ g. �

Theorem 3.9 (Plancherel theorem, first version) If u, v ∈ S then∫
ûv̂ =

∫
uv. (34)
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Proof By the inversion theorem,∫
u(x)v(x)dx =

∫
ˆ̂u(−x)v(x)dx =

∫
ˆ̂u(x)v(−x)dx

i.e., ∫
ûv̂ =

∫
ˆ̂uṽ.

Applying the duality relation to the right-hand side we obtain∫
uv =

∫
ûˆ̃v,

and now (34) follows from (6). �

Theorem 3.9 says that the Fourier transform restricted to Schwartz functions is an
isometry in the L2 norm. Since S is dense in L2 (e.g., by Lemma 3.3) this suggests a way
of extending the Fourier transform to L2.

Theorem 3.10 (Plancherel theorem, second version) There is a unique bounded op-
erator F : L2 → L2 such that Ff = f̂ when f ∈ S. F has the following additional
properties:

1. F is a unitary operator.
2. Ff = f̂ if f ∈ L1 ∩ L2.

Proof The existence and uniqueness statement is immediate from Theorem 3.9, as is
the fact that ‖Ff‖2 = ‖f‖2. In view of this isometry property, the range of F must be
closed, and unitarity of F will follow if we show that the range is dense. However, the
latter statement is immediate from Theorem 3.8 and Lemma 3.3.

It remains to prove 2. For f ∈ S, 2. is true by definition. Suppose now that f ∈ L1∩L2.
By Lemma 3.3, there is a sequence {gk} ⊂ S which converges to f both in L1 and in L2.
By Proposition 1.1, ĝk converges to f̂ uniformly. On the other hand, ĝk converges to Ff
in L2 by boundedness of the operator F . It follows that Ff = f̂ . �

Statement 2. allows us to use the notation f̂ for Ff if f ∈ L2 without any possible
ambiguity. We may therefore extend the definition of the Fourier transform to L1 + L2

(in fact to σ-finite measures of the form µ+ fdx, µ ∈M(Rn), f ∈ L2) via f̂ + g = f̂ + ĝ.

Corollary 3.12 The following form of the duality relation is valid:∫
ν̂ψ =

∫
ψ̂dν, ψ ∈ S,
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if ν = µ+ fdx, µ ∈M(Rn), f ∈ L2.

Proof We have already proved this in Lemma 3.5 if f = 0, so it suffices to prove it
when µ = 0, i.e., to show that ∫

f̂ψ =

∫
fψ̂

if f ∈ L2, ψ ∈ S. This is true by Lemma 3.5 if f ∈ L1 ∩ L2. Therefore it is also true for
f ∈ L2, since for fixed ψ both sides depend continuously on f (in the case of the left-hand
side this follows from the Plancherel theorem). �

Theorem 3.13 If µ ∈M(Rn), f ∈ L2 and

f̂ + µ̂ = 0,

then µ = −fdx. In particular, if µ ∈M(Rn) and µ̂ ∈ L2, then µ is absolutely continuous
with respect to the Lebesgue measure with an L2 density.

Proof By the Riesz representation theorem for measures on compact sets, the measure
µ+ fdx will be zero provided ∫

φdµ+ φfdx = 0 (35)

for continuous φ with compact support.
If φ ∈ C∞0 then (35) follows from Corollary 3.12. In general, we choose (e.g., by

Proposition 3.2) a sequence φk in C∞0 which converges to φ uniformly and in L2. We
write down (35) for the φk’s and pass to the limit. This proves (35).

To prove the last statement, suppose that µ̂ ∈ L2, and choose (by Theorem 3.10) a
function g ∈ L2 with ĝ = µ̂. Then dµ − gdx has Fourier transform zero, so by the first
part of the proof dµ = gdx. �

All the basic formulas for the L1 Fourier transform extend to the L1 + L2-Fourier
transform by approximation arguments. This was done above in the case of the duality
relation. Let us note in particular that the transformation formulas in Section 1 extend.
For example, in the case of (5), one has

f̂ ◦ T = |det (T )|−1f̂ ◦ T−t (36)

if f ∈ L1 + L2. Since we already know this when f ∈ L1, it suffices to prove it when
f ∈ L2. Choose {fk} ⊂ L1 ∩ L2, fk → f in L2. Composition with T is continuous on L2,
as is Fourier transform, so we can write down (36) for the {fk} and pass to the limit.

The L1 +L2 domain for the Fourier transform is wide enough to include many natural
examples. Note in particular that Lp ⊂ L1 + L2 if p ∈ (1, 2). Furthermore, certain
homogeneous functions belong to L1 +L2 although none of them can belong to Lp for any
fixed p. For example, |x|−a belongs to L1 + L2 if n

2
< a < n, since it belongs to L1 at the

origin and to L2 at infinity. However, the L1 + L2 domain is not always sufficient. The
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most natural way to proceed would be to develop the idea of tempered distributions, but
we don’t want to do this explicitly. Instead, we further broaden the definition of Fourier
transform as follows: a tempered function is a function f ∈ L1

loc(R
n) such that∫

(1 + |x|)−N |f(x)|dx <∞

for some constant N . Roughly, f has at most polynomial growth in the sense of L1

averages.
It is clear that if f is tempered and φ ∈ S, then

∫
|φf | < ∞. Furthermore, the map

φ →
∫
φf is continuous on S. It follows that φ ∗ f is well defined if φ ∈ S and f is

tempered, and a simple estimation shows that φ ∗ f is again tempered.
If f and g are tempered functions, we say that g is the distributional Fourier transform

of f if ∫
gφ =

∫
fφ̂ (37)

for all φ ∈ S. For given f , such a function g is unique using the density properties of S
as in several previous arguments. We denote g by f̂ . Notice also that if f ∈ L1 + L2,
then its L1 + L2-Fourier transform coincides with its distributional Fourier transform by
Proposition 3.12.

All the basic formulas, in particular (3), (4), (5), (6), extend to the case of distri-
butional Fourier transforms, e.g., if g is the distributional Fourier transform of f , then
|detT |−1f̂ ◦ T−t is the distributional Fourier transform of f ◦ T . This may be seen by
making appropriate changes of variable in the integrals in (37). We indicate how these
arguments are carried out by proving the extended version of formula (27). Namely, if f
is tempered, ψ ∈ S, and f has a distributional Fourier transform, then so does ψ ∗ f and

ψ̂ ∗ f = ψ̂f̂ (38)

The proof is as follows. Let φ be another Schwartz function. Then∫
(ψ̂f̂)φ =

∫
f̂(ψ̂φ)

=

∫
f
̂̂
ψφ

=

∫
f(

ˆ̂
ψ ∗ φ̂)

=

∫
f(x)

∫
ψ(−(x− y))φ̂(y)dydx

=

∫
ψ ∗ f(y)φ̂(y).

The second line followed from the definition of distributional Fourier transform, the third
line from (28), and the next to last line used the inversion theorem for ψ. Comparing
with the definition (37), we see that we have proved (38).
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Let us note also that the inversion theorem is true for distributional Fourier transforms:
if f is tempered and has a distributional Fourier transform f̂ , then f̂ has the distributional
Fourier transform f(−x). Here is the proof. If φ ∈ S, then∫

f(−x)φ(x)dx =

∫
f(x)φ(−x)dx

=

∫
f(x)

ˆ̂
φ(x)dx

=

∫
f̂(x)φ̂(x)dx.

We used a change of variables, the inversion theorem for φ, and the definition (37) of f̂ .
Comparing again with (37), we have the stated result. �

4. Some specifics, and Lp for p < 2

We first discuss a couple of basic examples where the Fourier transform can be calcu-
lated, namely powers of the distance to the origin and complex Gaussians.

Proposition 4.1 Let ha(x) = γ(a/2)

πa/2
|x|−a. Then ĥa = hn−a in the sense of L1 + L2

Fourier transforms if n
2
< Re (a) < n, and in the sense of distributional Fourier transforms

if 0 < Re (a) < n.

Here γ is the gamma function, i.e.,

γ(s) =

∫ ∞
0

e−tts−1dt.

Proof Suppose that a is real and n
2
< a < n. Then ha ∈ L1 + L2. The functions

of the form f(x) = c|x|−a with c constant may be characterized by the following two
transformation properties:

1. f is radial, i.e., f ◦ ρ = f for all linear ρ : Rn → Rn with ρtρ =identity.
2. f is homogeneous of degree −a, i.e.,

f(εx) = ε−af(x) (39)

for each ε > 0.

We will use the notation
fε(x) = f(εx), (40)

fε(x) = ε−nf(
x

ε
). (41)
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Let f(x) = |x|−a, n
2
< a < n. Taking Fourier transforms we obtain from 1. and 2. the

following (see the discussion in Section 1 regarding special cases of (5)): f̂ is radial, and
f̂ ε = ε−af̂ , which is equivalent to f̂ε = ε−(n−a)f̂ . Hence f̂ = c|x|−(n−a), and it remains to
evaluate the constant c. For this we use the duality relation, taking the Schwartz function
ψ to be the Gaussian Γ. Thus∫

|x|−ae−π|x|2dx = c

∫
|x|−(n−a)e−π|x|

2

dx. (42)

To evaluate the left hand side, change to polar coordinates and then make the change of
variable t = πr2. Thus, if σ is the area of the unit sphere, we get∫

|x|−ae−π|x|2dx = σ

∫ ∞
0

e−πr
2

rn−a
dr

r

= σ

∫ ∞
0

e−t(
t

π
)
n−a

2
dt

2t

=
σ

2
π−(n−a

2
)γ(

n− a
2

),

and similarly the right hand side of (42) is cσ
2
π−(a

2
)γ(a

2
). Hence

c =
π
a
2 γ(n−a

2
)

π
n−a

2 γ(a
2
)
,

and the proposition is proved in the case n
2
< a < n.

For the general case, fix φ ∈ S and consider the two integrals

A(z) =

∫
hzφ̂,

B(z) =

∫
hn−zφ.

Both A and B may be seen to be analytic in z in the indicated regime: since γ is analytic,
this reduces to showing that ∫

|x|−zφ(x)dx

is analytic when φ ∈ S, which may be done by using the dominated convergence theorem
to justify complex differentiation under the integral sign.

By Proposition 3.14, A and B agree for z in (n
2
, n). So they agree everywhere by the

uniqueness theorem. This proves that the distributional Fourier transform of ha exists
and is hn−a. If Re a > n

2
, then ha ∈ L1 +L2, so that its L1 +L2 and distributional Fourier

transforms coincide. �
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Let T be an invertible n×n real symmetric matrix. The signature of T is the quantity
k+ − k− where k+ and k− are the numbers of positive and negative eigenvalues of T ,
counted with multiplicity. We also define

GT (x) = e−πi〈Tx,x〉,

and observe that GT has absolute value 1 and is therefore tempered.

Proposition 4.2 Let T be an invertible n× n real symmetric matrix with signature σ.
Then GT has a distributional Fourier transform, which is equal to

e−πi
σ
4 |detT |− 1

2G−T−1

Remark This can easily be generalized to complex symmetric T with nonnegative
imaginary part (the latter condition is needed, elseGT is not tempered). See [17], Theorem
7.6.1. If n = 1, we do this case in the course of the proof.

Proof We need to show that∫
e−πi〈Tx,x〉φ̂(x)dx = e

−πi
4
σ|detT |− 1

2

∫
eπi〈T

−1x,x〉φ(x)dx (43)

if φ ∈ S and T is invertible real symmetric.
First consider the n = 1 case. Let

√
z be the branch of the square root defined on the

complement of the nonpositive real numbers and positive on the positive real axis. Thus√
±i = e±

πi
4 . Accordingly, (43) with n = 1 is equivalent to∫

e−πzx
2

φ̂(x)dx = (
√
z)−1

∫
e−π

x2

z φ(x)dx (44)

if φ ∈ S and z is pure imaginary and not equal to zero. We prove this formula by analytic
continuation from the real case.

Namely, if z = 1 then (44) is Example 2 in Section 1, and the case of z real and
positive then follows from scaling, i.e., the fact that the Fourier transform of fε is f̂ ε, see
(5). Both sides of (44) are easily seen to be analytic in z when Re z > 0 and continuous
in z when Re z ≥ 0, z 6= 0, so (44) is proved.

Now consider the n ≥ 2 case. Observe that if (43) is true for a given T (and all φ),
it is true also when T is replaced by UTU−1 for any U ∈ SO(n). This follows from the

fact that f̂ ◦ U = f̂ ◦ U . However, since we did not give an explicit proof of the latter
fact for distributional Fourier transforms, we will now exhibit the necessary calculations.
Let S = UTU−1. Thus S and T have the same determinant and the same signature.
Accordingly, if (43) holds for T then∫

e−πi〈Sx,x〉φ̂(x)dx =

∫
e−πi〈TU

−1x,U−1x〉φ̂(x)dx
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=

∫
e−πi〈Tx,x〉φ̂(Ux)dx

=

∫
e−πi〈Tx,x〉φ̂ ◦ U(x)dx

= e−
πi
4
σ|detT |− 1

2

∫
eπi〈T

−1x,x〉φ ◦ U(x)dx

= e−
πi
4
σ|detT |− 1

2

∫
eπi〈T

−1U−1x,U−1x〉φ(x)dx

= e−
πi
4
σ|detS|− 1

2

∫
eπi〈S

−1x,x〉φ(x)dx.

We used that φ̂ ◦ U = φ̂ ◦U for Schwartz functions φ, see the comments after formula (5)
in Section 1.

It therefore suffices to prove (43) when T is diagonal. If T is diagonal and φ is a
tensor function, then the integrals in (43) factor as products of one variable integrals
and (43) follows immediately from (44). The general case then follows from Proposition
2.1’ and the fact that integration against a tempered function defines a continuous linear
functional on S. �

We now briefly discuss the Lp Fourier transform, 1 < p < 2. The most basic result is
the Hausdorff-Young theorem, which is a formal consequence of the Plancherel theorem
and Proposition 1.1 via the following.

Riesz-Thorin interpolation theorem. Let T be a linear operator with domain Lp0 +Lp1,
1 ≤ p0 < p1 ≤ ∞. Assume that f ∈ Lp1 implies

‖Tf‖q0 ≤ A0‖f‖p0 (45)

and f ∈ Lp1 implies
‖Tf‖q1 ≤ A1‖f‖p1 (46)

for some 1 ≤ q0, q1 ≤ ∞. Suppose that for a certain θ ∈ (0, 1),

1

p
=

1− θ
p0

+
θ

p1

(47)

and
1

q
=

1− θ
q0

+
θ

q1
. (48)

Then f ∈ Lp implies
‖Tf‖q ≤ A1−θ

0 Aθ1‖f‖p.

For the proof see [20], [34], or numerous other textbooks.
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We will adopt the convention that when indices p and p′ are used we must have

1

p
+

1

p′
= 1.

Proposition 4.3 (Hausdorff-Young) If 1 ≤ p ≤ 2 then

‖f̂‖p′ ≤ ‖f‖p. (49)

Proof We interpolate between the cases p = 1 and 2, which we already know. Namely,
apply the Riesz-Thorin theorem with p0 = 1, q0 = ∞, p1 = q1 = 2, A0 = A1 = 1. The
hypotheses (45) and (46) follow from Proposition 1.1 and Theorem 3.10 respectively. For
given p, q, existence of θ ∈ (0, 1) for which (47) and (48) hold is equivalent to 1 < p < 2
and q = p′. The result follows. �

For later reference we insert here another basic result which follows from Riesz-Thorin,
although this one (in contrast to Hausdorff-Young) could also be proved by elementary
manipulation of inequalities.

Proposition 4.4(Young’s inequality) Let φ ∈ Lp, ψ ∈ Lr, where 1 ≤ p, r ≤ ∞ and
1
p

+ 1
r
≥ 1. Let 1

q
= 1

p
− 1

r′ . Then the integral defining φ ∗ ψ is absolutely convergent for
a.e. x and

‖φ ∗ ψ‖q ≤ ‖φ‖p‖ψ‖r.

Proof View φ as fixed, i.e., define

Tψ = φ ∗ ψ.

Inequalities (24) and (25) imply that

T : L1 + Lp
′ → Lp + L∞

with
‖Tψ‖p ≤ ‖φ‖p‖ψ‖1

‖Tψ‖∞ ≤ ‖φ‖p‖ψ‖p′.
If 1

q
= 1

p
− 1

r′ then there is θ ∈ [0, 1] with

1

r
=

1− θ
1

+
θ

p′

1

q
=

1− θ
p

+
θ

∞ .

25



The result now follows from Riesz-Thorin. �

Remarks 1. Unless p = 1 or 2, the constant 1 in the Hausdorff-Young inequality is
not the best possible; indeed the best constant is found by testing the Gaussian function
Γ. This is much deeper and is due to Babenko when p′ is an even integer and to Beckner
[1] in general. There are some related considerations in connection with Proposition 4.4,
due also to Beckner.

2. Except in the case p = 2 the inequality (49) is not reversible, in the sense that
there is no constant C such that ‖f‖p′ ≥ ‖f‖p when f ∈ S. Equivalently (in view of the
inversion theorem) the result does not extend to the case p > 2. This is not at all difficult
to show, but we discuss it at some length in order to illustrate a few different techniques
used for constructing examples in connection with the Lp Fourier transform. Here is the
most elementary argument.

Exercise Using translation and multiplication by characters, construct a sequence of
Schwartz functions {φn} so that

1. Each φn has the same Lp norm.
2. Each φ̂n has the same Lp

′
norm.

3. The supports of the φ̂n are disjoint.
4. The supports of the φn are “essentially disjoint” meaning that

‖
N∑
n=1

φn‖pp ≈
N∑
n=1

‖φn‖pp (≈ N)

uniformly in N .
Use this to disprove the converse of Hausdorff-Young.

Here is a second argument based on Proposition 4.2. This argument can readily be
adapted to show that there are functions f ∈ Lp for any p > 2 which do not have a
distributional Fourier transform in our sense. See [17], Theorem 7.6.6.

Take n = 1 and fλ(x) = φ(x)e−πiλx
2
, where φ ∈ C∞0 is fixed. Here λ is a large positive

number. Then ‖fλ‖p is independent of λ for any p. By the Plancherel theorem, ‖f̂λ‖2

is also independent of λ. On the other hand, f̂λ is the convolution of φ̂, which is in L1,

with (
√
iλ)−1eπiλ

−1
x2

, which has L∞ norm λ−
1
2 . Accordingly, if p < 2 then

‖f̂λ‖p′ ≤ ‖f̂λ‖
2
p′
2 ‖f̂λ‖

1− 2
p′

∞

. λ
−( 1

2
− 1
p′ ).

Since ‖fλ‖p is independent of λ, this shows that when p < 2 there is no constant C
such that C‖f‖p′ ≥ ‖f‖p for all f ∈ S. �

26



Here now is another important technique (“randomization”) and a third disproof of
the converse of Hausdorff-Young.

Let {ωn}Nn=1 be independent random variables taking values ±1 with equal probability.
Denote expectation (a.k.a. integral over the probability space in question) by E, and
probability (a.k.a. measure) by Prob. Let {an}Nn=1 be complex numbers.

Proposition 4.5 (Khinchin’s inequality)

E(|
N∑
n=1

anωn|p) ≈ (

N∑
n=1

|an|2)
p
2 (50)

for any 0 < p <∞, where the implicit constants depend on p only.

Most books on probability and many analysis books give proofs. Here is the proof in
the case p > 1. There are three steps.

(i) When p = 2 it is simple to see from independence that (50) is true with equality:
expand out the left side and observe that the cross terms cancel.

(ii) The upper bound. This is best obtained as a consequence of a stronger (“subgaus-
sian”) estimate. One can clearly assume the {an} are real and (52) below is for real {an}.
Let t > 0. We have

E(et
P
n anωn) =

∏
n

E(etanωn) =
∏
n

1

2
(etan + e−tan),

where the first equality follows from independence and the fact that ex+y = exey. Use the
numerical inequality

1

2
(ex + e−x) ≤ e

x2

2 (51)

to conclude that

E(et
P
n anωn) ≤ e

t2

2

P
n a

2
n ,

therefore

Prob(
∑
n

anωn ≥ λ) ≤ e−tλ+ t2

2

P
n a

2
n

for any t > 0 and λ > 0. Taking t = λP
n a

2
n

gives

Prob(
∑
n

anωn ≥ λ) ≤ e
− λ2

2
P
n a

2
n , (52)

hence

Prob(|
∑
n

anωn| ≥ λ) ≤ 2e
− λ2

2
P
n a

2
n .
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From this and the formula for the Lp norm in terms of the distribution function,

E(|f |p) = p

∫
λp−1Prob(|f | ≥ λ)dλ

one gets

E(|
∑
n

anωn|p) ≤ 2p

∫
λp−1e

− λ2

2
P
n a

2
n dλ = 22+ p

2pγ(
p

2
)(
∑
n

a2
n)

p
2 .

This proves the upper bound.

(iii) The lower bound. This follows from (i) and (ii) by duality. Namely∑
n

|an|2 = E(|
∑
n

anωn|2)

≤ E(|
∑
n

anωn|p)
1
pE(|

∑
n

anωn|p
′
)

1
p′

. (
∑
n

|an|2)
1
2E(|

∑
n

anωn|p)
1
p ,

so that
E(|
∑
n

anωn|p)
1
p & (

∑
n

|an|2)
1
2

as claimed. �.

To apply this in connection with the converse of Hausdorff-Young, let φ be a C∞0

function, and let {kj}Nj=1 be such that the functions φj
def
= φ(· − kj) have disjoint support.

Thus φ̂n(ξ) = e2πiξ·knφ̂(ξ). The Lp norm of
∑

n≤N ωnφn is independent of ω in view of the
disjoint support, indeed

‖
∑
n≤N

ωnφn‖p = CN
1
p , (53)

where C = ‖φ‖p.
Now consider the corresponding Fourier side norms, more precisely the expectation of

their p′ powers:

E(‖
∑
n≤N

ωnφ̂n‖p
′

p′. (54)

We have by Fubini’s theorem

(54) = E(‖
∑
n≤N

ωne
2πiξ·knφ̂(ξ))‖p′

Lp′(dξ)

=

∫
Rn
|φ̂(ξ)|p′E(|

∑
n≤N

ωne
2πiξ·kn|p′)

≈ N
p′
2 ,
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where at the last step we used Khinchin.
It follows that we can make a choice of ω so that ‖

∑
n≤N ωnφ̂n‖p′ . N

1
2 . If p < 2 and

if N is large, this is much smaller than the right hand side of (53), so we are done.

5. Uncertainty Principle

The uncertainty principle is1 the heuristic statement that if a measure µ is supported
on R, then for many purposes µ̂ may be regarded as being constant on any dual ellipsoid
R∗.

The simplest rigorous statement is

Proposition 5.1 (L2 Bernstein inequality) Assume that f ∈ L2 and f̂ is supported in
D(0, R). Then f is C∞ and there is an estimate

‖Dαf‖2 ≤ (2πR)|α|‖f‖2. (55)

Proof Essentially this is an immediate consequence of the Plancherel theorem, see the
calculation at the end of the proof. However, there are some details to take care of if one
wants to be rigorous.

The Fourier inversion formula

f(x) =

∫
f̂(ξ)e2πix·ξdξ (56)

is valid (in the naive sense). Namely, note that the support assumption implies f̂ ∈ L1,
and choose a sequence of Schwartz functions ψk which converges to f̂ both in L1 and
in L2. Let φk ∈ S satisfy φ̂k = ψk. The formula (56) is valid for φk. As k → ∞, the
left sides converge in L2 to f by Theorem 3.10 and the right sides converge uniformly to∫
f̂(ξ)e2πix·ξdξ, which proves (56) for f .

Proposition 1.3 applied to f̂ now implies that f is C∞ and that Dαf is obtained by
differentiation under the integral sign in (56). The estimate (55) holds since

‖Dαf‖2 = ‖D̂αf‖2 = ‖(2πiξ)αf̂‖2 ≤ (2πR)|α|‖f̂‖2 = (2πR)|α|‖f‖2. �

A corresponding statement is also true in Lp norms, but proving this and other related
results needs a different argument since there is no Plancherel theorem.

Lemma 5.2 There is a fixed Schwartz function φ such that if f ∈ L1 + L2 and f̂ is
supported in D(0, R), then

f = φR
−1 ∗ f.

1This should be qualified by adding “as far as we are concerned”. There are various more sophisticated
related statements which are also called uncertainty principle; see for example [14], [15] and references
there.
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Proof Take φ ∈ S so that φ̂ is equal to 1 on D(0, 1). Thus φ̂R−1(ξ) = φ̂(R−1ξ) is equal
to 1 on D(0, R), so (φR

−1 ∗ f − f )̂ vanishes identically. Hence φR
−1 ∗ f = f . �

Proposition 5.3 (Bernstein’s inequality for a disc) Suppose that f ∈ L1 + L2 and f̂ is
supported in D(0, R). Then

1. For any α and p ∈ [1,∞],

‖Dαf‖p ≤ (CR)|α|‖f‖p.

2. For any 1 ≤ p ≤ q ≤ ∞

‖f‖q ≤ CRn( 1
p
− 1
q

)‖f‖p.

Proof The function ψ = φR
−1

satisfies

‖ψ‖r = CR
n
r′ (57)

for any r ∈ [1,∞], where C = ‖φ‖r. Also, using the chain rule

‖∇ψ‖1 = R‖φ‖1. (58)

We know that f = ψ ∗ f . In the case of first derivatives, 1. therefore follows from (57)
and (24). The general case of 1. then follows by induction.

For 2., let r satisfy 1
q

= 1
p
− 1

r′ . Apply Young’s inequality obtaining

‖f‖q = ‖ψ ∗ f‖q
≤ ‖ψ‖r‖f‖p
. R

n
r′ ‖f‖p

= Rn( 1
p
− 1
q

)‖f‖p.

�

We now extend the Lp → Lq bound to ellipsoids instead of balls, using change of
variable. An ellipsoid in Rn is a set of the form

E = {x ∈ Rn :
∑
j

|(x− a) · ej|2
r2
j

≤ 1} (59)

for some a ∈ Rn (called the center of E), some choice of orthonormal basis {ej} (the axes)
and some choice of positive numbers rj (the axis lengths). If E and E∗ are two ellipsoids,
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then we say that E∗ is dual to E if E∗ has the same axes as E and reciprocal axis lengths,
i.e., if E is given by (59) then E∗ should be of the form

{x ∈ Rn :
∑
j

r2
j |(x− b) · ej |2 ≤ 1

for some choice of the center point b.

Proposition 5.4 (Bernstein’s inequality for an ellipsoid) Suppose that f ∈ L1 +L2 and

f̂ is supported in an ellipsoid E. Then

‖f‖q . |E|(
1
p
− 1
q

)‖f‖p

if 1 ≤ p ≤ q ≤ ∞.

One could similarly extend the first part of Proposition 5.3 to ellipsoids centered at
the origin, but the statement is awkward since one has to weight different directions
differently, so we ignore this.

Proof Let k be the center of E. Let T be a linear map taking the unit ball onto E−k.
Let S = T−t; thus T = S−t also. Let f1(x) = e−2πik·xf(x) and g = f1 ◦ S, so that

ĝ(ξ) = |detS|−1f̂1(S−t(ξ))

= |detS|−1f̂(S−t(ξ + k))

= |detT |f̂(T (ξ) + k)).

Thus ĝ is supported in the unit ball, so by Proposition 5.3

‖g‖q . ‖g‖p.

On the other hand,

‖g‖q = |detS|−
1
q ‖f‖q = |detT |

1
q ‖f‖q = |E|

1
q ‖f‖q

and likewise with q replaced by p. So

|E|
1
q ‖f‖q . |E|

1
p‖f‖p

as claimed. �

For some purposes one needs a related “pointwise statement”, roughly that if suppf̂ ⊂
E, then for any dual ellipsoid E∗ the values on E∗ are controlled by the average over E∗.

To formulate this precisely, let N be a large number and let φ(x) = (1 + |x|2)−N .
Suppose an ellipsoid R∗ is given. Define φE∗(x) = φ(T (x − k)), where k is the center
of E∗ and T is a selfadjoint linear map taking E∗ − k onto the unit ball. If T1 and T2
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are two such maps, then T1 ◦ T−1
2 is an orthogonal transformation, so φE∗ is well defined.

Essentially, φE∗ is roughly equal to 1 on E∗ and decays rapidly as one moves away from
E∗. We could also write more explicitly

φE∗(x) =
(

1 +
∑
j

|(x− k) · ej|2
r2
j

)−N
.

Proposition 5.5 Suppose that f ∈ L1 +L2 and f̂ is supported in an ellipsoid E. Then
for any dual ellipsoid E∗ and any z ∈ E∗,

|f(z)| ≤ CN
1

|E∗|

∫
|f(x)|φE∗dx. (60)

Proof Assume first that E is the unit ball, and E∗ is also the unit ball. Then f is the
convolution of itself with a fixed Schwartz function ψ. Accordingly

|f(z)| ≤
∫
|f(x)| |ψ(z − x)|dx

≤ CN

∫
|f(x)|(1 + |z − x|2)−N

≤ CN

∫
|f(x)|(1 + |x|2)−N .

We used the Schwartz space bounds for ψ and that 1 + |z − x|2 & 1 + |x|2 uniformly in x
when |z| ≤ 1. This proves (60) when E = E∗ =unit ball.

Suppose next that E is centered at zero but E and E∗ are otherwise arbitrary. Let k
and T be as above, and consider

g(x) = f(T−1x+ k)).

Its Fourier transform is supported on T−1E, and if T maps E∗ onto the unit ball, then
T−1 maps E onto the unit ball. Accordingly,

|g(y)| ≤
∫
φ(x)|g(x)|dx

if y ∈ D(0, 1), so that

f(T−1z + k) ≤
∫
φ(x)|f(T−1x+ k)|dx = |detT |

∫
φE∗(x)|f(x)|dx

by changing variables. Since |detT | = 1
|E∗| , we get (60).

If E isn’t centered at zero, then we can apply the preceding with f replaced by
e−2πik·xf(x) where k is the center of E. �
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Remarks 1. Proposition 5.5 is an example of an estimate “with Schwartz tails”. It is
not possible to make the stronger conclusion that, say, |f(x)| is bounded by the average
of f over the double of E∗ when x ∈ E∗, even in the one dimensional case with E = E∗ =
unit interval. For this, consider a fixed Schwartz function g whose Fourier transform is
supported in the unit interval [−1, 1]. Consider also the functions

fN (x) = (1− x2

4
)Ng(x).

Since f̂N are linear combinations of ĝ and its derivatives, they have the same support as
ĝ. Moreover, they converge pointwise boundedly to zero on [−2, 2], except at the origin.
It follows that there can be no estimate of the value of fN at the origin by its average
over [−2, 2].

2. All the estimates related to Bernstein’s inequality are sharp except for the values
of the constants. For example, if E is an ellipsoid, E∗ a dual ellipsoid, N <∞, then there
is a function f with suppf̂ ⊂ E∗ and with

‖f‖1 ≥ |E|, (61)

|f(x)| ≤ CφE(x), (62)

where φE = φ
(N)
E was defined above. In the case E = E∗ =unit ball this is obvious: take f

to be any Schwartz function with Fourier support in the unit ball and with the appropriate
L1 norm. The general case then follows as above by making changes of variable.

The estimates (61) and (62) imply that ‖f‖p ≈ |E|
1
p for any p, so it follows that

Proposition 5.4 is also sharp.

6. Stationary phase

Let φ be a real valued C∞ function, let a be a C∞0 function, and define

I(λ) =

∫
e−πiλφ(x)a(x)dx.

Here λ is a parameter, which we always assume to be positive. The issue is the
behavior of the integral I(λ) as λ→ +∞.

Some general remarks 1. |I(λ)| is clearly bounded by a constant depending on a only.
One may expect decay as λ → ∞, since when λ is large the integral will involve a lot of
cancellation.

2. On the other hand, if φ is constant then |I(λ)| is independent of λ. So one needs to
put nondegeneracy hypotheses on φ. As it turns out, properties of a are less important.
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Note also that one can always cut up a with a partition of unity, which means that the
question of how fast I(λ) decays can be “localized” to a small neighborhood of a point.

3. Suppose that φ1 = φ2 ◦G where G is a smooth diffeomorphism. Then∫
e−πiλφ2(x)a(x)dx =

∫
e−πiλφ1(G−1x)a(x)dx

=

∫
e−πiλφ1(y)a(Gy)d(Gy)

=

∫
e−πiλφ1(y)a(Gy)|JG(y)|dy

where JG is the Jacobian determinant. The function y → a(Gy)|JG(y)| is again C∞0 , so we
see that any bound for I(λ) which is independent of choice of a will be “diffeomorphism
invariant”.

4. Recall from advanced calculus [23] the normal forms for a function near a regular
point or a nondegenerate critical point:

Straightening Lemma Suppose Ω ⊂ Rn is open, f : Ω → R is C∞, p ∈ Ω and
∇f(p) 6= 0. Then there are neighborhoods U and V of 0 and p respectively and a C∞

diffeomorphism G : U → V with G(0) = p and

f ◦G(x) = f(p) + xn.

Morse Lemma Suppose Ω ⊂ Rn is open, f : Ω → R is C∞, p ∈ Ω,∇f(p) = 0, and

suppose that the Hessian matrix Hf (p) =
(

∂2f
∂xi∂xj

(p)
)

is invertible. Then, for a unique k

(= number of positive eigenvalues of Hf ; see Lemma 6.3 below) there are neighborhoods
U and V of 0 and p respectively and a C∞ diffeomorphism G : U → V with G(0) = p and

f ◦G(x) = f(p) +

k∑
j=1

x2
j −

n∑
j=k+1

x2
j .

We consider now I(λ) first when a is supported near a regular point, and then when
a is supported near a nondegenerate critical point. Degenerate critical points are easy
to deal with if n = 1, see [33], chapter 8, but in higher dimensions they are much more
complicated and only the two-dimensional case has been worked out, see [36].

Proposition 6.1 (Nonstationary phase) Suppose Ω ⊂ Rn is open, φ : Ω→ R is C∞, p ∈
Ω and ∇φ(p) 6= 0. Suppose a ∈ C∞0 has its support in a sufficiently small neighborhood
of p. Then

∀N ∃CN : |I(λ)| ≤ CNλ
−N ,
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and furthermore CN depends only on bounds for finitely many derivatives of φ and a and
a lower bound for |∇φ(p)| (and on N).

Proof The straightening lemma and the calculation in 3. above reduce this to the case
φ(x) = xn + c. In this case, letting en = (0, . . . , 0, 1) we have

I(λ) = e−πiλcâ(
λ

2
en),

and this has the requisite decay by Proposition 2.3. �

Now we consider the nondegenerate critical point case, and as in the preceding proof
we first consider the normal form.

Proposition 6.2 Let T be a real symmetric invertible matrix with signature σ, let a be
C∞0 (or just in S), and define

I(λ) =

∫
e−πiλ〈Tx,x〉a(x)dx.

Then, for any N ,

I(λ) = e−πi
σ
4 |detT |− 1

2λ−
n
2

(
a(0) +

N∑
j=1

λ−jDja(0) +O(λ−(N+1))

)
.

Here Dj are certain explicit homogeneous constant coefficient differential operators of
order 2j, depending on T only, and the implicit constant depends only on T and on
bounds for finitely many Schwartz space seminorms of a.

Proof Essentially this is just another way of looking at the formula for the Fourier
transform of an imaginary Gaussian. By Proposition 4.2, the definition of distributional
Fourier transform, and the Fourier inversion theorem for a we have

I(λ) = e−πi
σ
4 λ−

n
2 |detT |− 1

2

∫
â(−ξ)eπiλ

−1
〈T−1ξ,ξ〉dξ.

We can replace â(−ξ) with â(−ξ) by making a change of variables, since the Gaussian
is even. To understand the resulting integral, use that λ−1 → 0 as λ→∞, so the Gaussian
term is approaching 1. To make this quantitative, use Taylor’s theorem for eix:

eπiλ
−1
〈T−1ξ,ξ〉 =

N∑
j=0

(πiλ−1〈T−1ξ, ξ〉)j
j!

+O(
|ξ|2N+2

λN+1
)

uniformly in ξ and λ. Accordingly,∫
â(ξ)eπiλ

−1
〈T−1ξ,ξ〉dξ =

∫
â(ξ)(1 +

N∑
j=1

(πiλ−1〈T−1ξ, ξ〉)j
j!

)dξ

+O
(∫
|â(ξ)| |ξ|

2N+2

λN+1

)
.
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Now observe that
∫
â(ξ)dξ = a(0) by the inversion theorem, and similarly∫

â(ξ)
(πi〈T−1ξ, ξ〉)j

j!
dξ

is the value at zero of Dja for an appropriate differential operator Dj . This gives the
result, since ∫

|â(ξ)|ξ|2N+2dξ

is bounded in terms of Schwartz space seminorms of â, and therefore in terms of derivatives
of a. �

Now we consider the case of a general phase function with a nondegenerate critical
point. It is clear that this should be reducible to the Gaussian case using the Morse lemma
and remark 3. above. However, there is more calculation involved than in the proof of
Proposition 5.1, since we need to obtain the correct form for the asymptotic expansion.
We recall the following formula which follows from the chain rule:

Lemma 6.3 Suppose that φ is smooth, ∇φ(p) = 0 and G is a smooth diffeomorphism,
G(0) = p. Then

Hφ◦G(0) = DG(0)tHφ(p)DG(0).

Thus Hφ(p) and Hφ◦G(0) have the same signature and

det (Hφ◦G(0)) = JG(0)2det (Hφ(p)).

Proposition 6.4 Let φ be C∞ and assume that ∇φ(p) = 0 and Hφ(p) is invertible. Let
σ be the signature of Hφ(p), and let ∆ = 2−n|det (Hφ(p)|. Let a be C∞0 and supported in
a sufficiently small neighborhood of p. Define

I(λ) =

∫
e−πiλφ(x)dxa(x).

Then, for any N ,

I(λ) = e−πiλφ(p)e−πi
σ
4 ∆−

1
2λ−

n
2

(
a(p) +

N∑
j=1

λ−jDja(p) +O(λ−(N+1))

)
.

Here Dj are certain differential operators of order2 ≤ 2j, with coefficients depending on
φ, and the implicit constant depends on φ and on bounds for finitely many derivatives of
a.

2Actually the order is exactly 2j but we have no need to know that.
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Proof We can assume that φ(p) = 0; else we replace φ with φ − φ(p). Choose a C∞

diffeomorphism G by the Morse lemma and apply remark 3. Thus

Iλ =

∫
e−πiλ〈Ty,y〉a(Gy)|JG(y)|dy,

where T is a diagonal matrix with diagonal entries ±1 and with signature σ. Also
|JG(0)| = ∆−

1
2 by Lemma 6.3 and an obvious calculation of the Hessian determinant

of the function y → 〈Ty, y〉. Let Dj be associated to this T as in Proposition 5.2 and let
b(y) = a(Gy)|JG(y)|. Then

I(λ) = e−πi
σ
4 λ−

n
2

(
b(0) +

N∑
j=1

λ−jDjb(0) +O(λ−(N+1))

)

by Proposition 6.2. Now b(0) = |JG(0)|a(p) = ∆−
1
2a(p), so we can write this as

I(λ) = e−πi
σ
4 ∆−

1
2λ−

n
2

(
a(p) +

N∑
j=1

λ−j∆
1
2Djb(0) +O(λ−(N+1))

)
.

Further, it is clear from the chain rule and product rule that any 2j-th order derivative of
b at the origin can be expressed as a linear combination of derivatives of a at p of order
≤ 2j with coefficients depending on G, i.e., on φ. Otherwise stated, the term ∆

1
2Djb(0)

can be expressed in the form D̃ja(p), where D̃j is a new differential operator of order ≤ 2j
with coefficients depending on φ. This gives the result. �

In practice, it is often more useful to have estimates for I(λ) instead of an asymptotic
expansion. Clearly an estimate |I(λ)| . λ−

n
2 could be derived from Proposition 6.4, but

one also sometimes needs estimates for the derivatives of I(λ) with respect to suitable
parameters. For now we just consider the technically easiest case where the parameter is
λ itself.

Proposition 6.5 (i) Assume that ∇φ(p) 6= 0. Then for a supported in a small neigh-

borhood of p,
∣∣∣djI(λ)

dλj

∣∣∣ ≤ CjNλ
−N for any N .

(ii)Assume that ∇φ(p) = 0, and Hφ(p) is invertible. Then, for a supported in a small
neighborhood of p, ∣∣∣∣ dkdλk (eπiλφ(p)I(λ))

∣∣∣∣ ≤ Ckλ
−(n

2
+k).

Proof We only prove (ii), since (i) follows easily from Proposition 6.1 after differenti-
ating under the integral sign as in the proof below. For (ii) we need the following.

Claim. Let {φi}Mi=1 be real valued smooth functions and assume that φi(p) = 0,
∇φi(p) = 0. Let Φ = ΠM

i=1φi. Then all partial derivatives of Φ of order less than 2M also
vanish at p.
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Proof By the product rule any partial DαΦ is a linear combination of terms of the
form

M∏
i=1

Dβiφi

with
∑

i βi = α. If |α| < 2M , then some βi must be less than 2, so by hypothesis all such
terms vanish at p.

To prove the proposition, differentiate I(λ) under the integral sign obtaining

dk(eπiλφ(p)I(λ))

dλk
= (−πi)k

∫
(φ(x)− φ(p))ka(x)e−πiλ(φ(x)−φ(p)dx.

Let b(x) = (φ(x)− φ(p))ka(x). By the above claim all partials of b of order less than 2k
vanish at p. Now look at the expansion in Proposition 6.4 replacing a with b and setting
N = k− 1. By the claim the terms Djb(p) must vanish when j < k, as well as b(p) itself.

Hence Proposition 5.4 shows that dk

dλk
(eπiλφ(p)I(λ)) = O(λ−(n

2
+k)) as claimed. �

As an application we estimate the Fourier transform of the surface measure σ on the
sphere Sn−1 ⊂ Rn. For this and for other similar calculations one wants to work with an
integral over a submanifold instead of over Rn. This is not significantly different since it
is always possible to work in local coordinates. However, things are easier if one uses the
local coordinates as economically as possible. Recall then that if φ : Rn → R is smooth
and if M is a k-dimensional submanifold, p ∈M , and if F : U →M is a local coordinate
(more precisely the inverse map to one) near p, then φ◦F will have a critical point at F−1p
iff ∇φ(p) is orthogonal to the tangent space to M at p; in particular this is independent
of the choice of F .

Notice that σ̂ is a radial function, because the surface measure is rotation invariant
(exercise: prove this rigorously), and is smooth by Proposition 1.3. It therefore suffices
to consider σ̂(λen) where en = (0, . . . , 0, 1) and λ > 0.

Put local coordinates on the sphere as follows: the first “local coordinate” is the map

x→ (x,
√

1− |x|2),

Rn−1 ⊃ D(0,
1

2
)→ Sn−1.

The second is the map
x→ (x,−

√
1− |x|2),

Rn−1 ⊃ D(0,
1

2
)→ Sn−1,

and the remaining ones map onto sets whose closures do not contain {±en}. Let {qk} be
a suitable partition of unity subordinate to this covering by charts. Define φ(x) = en · x,
φ : Rn → R. Thus the gradient of φ is en and is normal to the sphere at ±en only.
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Now

σ̂(λen) =

∫
e−2πiλen·xdσ(x)

=

k∑
j=1

∫
e−2πiλen·xqk(x)dσ(x)

=

∫
D(0, 1

2
)

e−2πiλ
√

1−|x|2 q1(x)√
1− |x|2

dx+

∫
D(0, 1

2
)

e2πiλ
√

1−|x|2 q2(x)√
1− |x|2

dx

+
∑
k≥3

∫
e−2πiλφk(x)ak(x)dx, (63)

where the dx integrals are in Rn−1, and the phase functions φk for k ≥ 3 have no critical
points in the support of ak. The Hessian of 2

√
1− |x|2 at the origin is −2 times the

identity matrix, and in particular is invertible. It is also clear that the first and second
terms are complex conjugates. We conclude from Proposition 6.5 that

σ̂(λen) = Re(a(λ)e2πiλ) + y(λ)

with
dja(λ)

dλj
. λ−

n−1
2
−j, (64)

djy(λ)

dλj
. λ−N (65)

for any N . In fact σ is real and even and therefore σ̂ must be real valued. Multiplying y

by e−2πiλ does not affect the estimate (65), so we can absorb y into a and rewrite this as

σ̂(λen) = Re(a(λ)e2πiλ),

where a satisfies (64). Since σ̂ is radial, we have proved the following.

Corollary 6.6 The function σ̂ (is a C∞ function and) satisfies

σ̂(x) = Re(a(|x|)e2πi|x|), (66)

where for large r

|d
ja

drj
| ≤ Cjr

−(n−1
2

+j). (67)

Furthermore, looking at the first term in (63), and using the expansion of Proposition
6.4, with N = 0, we can obtain the leading behavior at ∞. Namely, for the first term in
(63) at its critical point x = 0 we have a phase function 2

√
1− |x|2 with φ(0) = 2, ∆ = 1
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and signature −(n − 1), and an amplitude q2(x)(1 − |x|2)−1/2 which is 1 at the critical
point. By Proposition 6.4 the integral is

e−2πiλe
πi
4

(n−1)λ−
n−1

2 +O(λ−
n+1

2 ).

The second term is the complex conjugate and the others are O(λ−N) for any N . Hence
the quantity (63) is

2λ−
n−1

2 cos(2π(λ− n− 1

8
)) +O(λ−

n+1
2 )

and we have proved

Corollary 6.7 For large |x|

σ̂(x) = 2|x|−n−1
2 cos(2π(|x| − n− 1

8
)) +O(|x|−n+1

2 ).

Remarks Of course it is possible to consider surfaces other than the sphere, see for
example [17], Theorem 7.7.14. The main point in regard to the latter is that the nondegen-
eracy of the critical points of the phase function which arises when calculating the Fourier
transform is equivalent to nonzero Gaussian curvature, so a hypersurface with nonzero
Gaussian curvature everywhere behaves essentially the same as the sphere, whereas if there
are flat directions the decay becomes weaker. Obtaining derivative bounds like Corollary
6.6 in the above manner requires a somewhat more complicated version of Proposition
6.5 with φ and a depending on an auxiliary parameter z, which we now explain without
giving the proofs.

Suppose that φ(x, z) is a C∞ function of x and z, where x ∈ Rn, and z ∈ Rk should
be regarded a parameter. Assume that for a certain p and z0 we have ∇xφ(p, z0) = 0 and
that the matrix of second x-partials of φ at (p, z0) is invertible.

1. Prove that there are neighborhoods U of z0 and V of p and a smooth function
κ : U → V with the following property: if z ∈ V , then ∇xφ(x, z) = 0 if and only if
x = κ(z).

2. Let a(x, z) be C∞0 and supported in a small enough neighborhood of (p, z0). Define

I(λ, z) =

∫
e−πiλφ(x,z)a(x, z)dx.

Prove the following: ∣∣∣∣∣dj+k(eπiλφ(κ(z),z)I(λ, z))

dλjdzk

∣∣∣∣∣ ≤ Cjkλ
−(n

2
+j).

This is the analogue of Proposition 6.5 for general parameters.
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7. Restriction problem

We now suppose given a function f : Sn−1 → C and consider the Fourier transform

f̂dσ(ξ) =

∫
Sn−1

f(x)e−2πix·ξdσ(x). (68)

If f is smooth, then one can use stationary phase to evaluate f̂dσ to any desired degree
of precision, just as with Corollary 6.6. In particular this leads to the bound

|f̂dσ(ξ)| ≤ C‖f‖C2(1 + |ξ|)−n−1
2

say, where ‖f‖C2 =
∑

0≤|α|≤2 ‖Dαf‖L∞.
On the other hand there can be no similar decay estimate for functions f which are

just bounded. The reason for this is that then there is no distinguished reference point in
Fourier space. Thus, if we let fk(x) = e2πik·x and set ξ = k, we have

|f̂kdσ(ξ)| = σ(Sn−1) ≈ 1.

Taking a sum of the form f =
∑

j j
−2fkj , where |kj| → ∞ sufficiently rapidly, we obtain

a continuous function f such that there is no estimate

|f̂dσ(ξ)| ≤ C(1 + |ξ|)−ε

for any ε > 0.
On the other hand, if we consider instead Lq norms then the issue of a distinguished

origin is no longer relevant. The following is a long standing open problem in the area.

Restriction conjecture (Stein) Prove that if f ∈ L∞(Sn−1) then

‖f̂dσ‖q ≤ Cq‖f‖∞ (69)

for all q > 2n
n−1

.

The example of a constant function shows that the regime q > 2n
n−1

would be best

possible. Namely, Corollary 6.7 implies that σ̂ ∈ Lq if and only if q · n−1
2
> n.

The corresponding problem for L2 densities f was solved in the 1970’s:

Theorem 7.1 (P. Tomas-Stein) If f ∈ L2(Sn−1) then

‖f̂dσ‖q ≤ C‖f‖L2(Sn−1) (70)

for q ≥ 2n+2
n−1

, and this range of q is best possible.
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Remarks 1. Notice that the assumptions on q in (70) and (69) are of the form q > q0

or q ≥ q0. The reason for this is that there is an obvious estimate

‖f̂dσ‖∞ ≤ ‖f‖1

by Proposition 1.1, and it follows by the Riesz-Thorin theorem that if (69) or (70) holds
for a given q, then it also holds for any larger q.

2. The restriction conjecture (69) is known to be true when n = 2; this is due to C.
Fefferman and Stein, early 1970’s. See [12] and [33].

3. Of course there is a difference in the Lq exponent in (70) and the one which
is conjectured for L∞ densities. Until fairly recently it was unknown (in three or more
dimensions) whether the estimate (69) was true even for some q less than the Stein-Tomas
exponent 2n+2

n−1
. This was first shown by Bourgain [3], a paper which has been the starting

point for a lot of recent work.

4. The fact that q ≥ 2n+2
n−1

is best possible for (70) is due I believe to A. Knapp. We
now discuss the construction. Notice that in order to distinguish between L2 and L∞

norms, one should use a function f which is highly localized. Next, in view of the nice
behavior of rectangles under the Fourier transform discussed e.g. in our section 5, it is
natural to take the support of f to be the intersection of Sn−1 with a small rectangle.
Now we set up the proof.

Let
Cδ = {x ∈ Sn−1 : 1− x · en ≤ δ2},

where en = (0, . . . , 0, 1). Since |x− en|2 = 2(1− x · en), it is easy to show that

|x− en| ≤ C−1δ ⇒ x ∈ Cδ ⇒ |x− en| ≤ Cδ (71)

for an appropriate constant C. Now let f = fδ be the indicator function of Cδ. We

calculate ‖f‖L2(Sn−1) and ‖f̂dσ‖q. All constants are of course independent of δ.
In the first place, ‖f‖2 is the square root of the measure of Cδ, so by (71) and the

dimensionality of the sphere we have

‖f‖2 ≈ δ
n−1

2 . (72)

The support of fdσ is contained in the rectangle centered at en with length about δ2 in
the en direction and length about δ in the orthogonal directions. We look at f̂dσ on the
dual rectangle centered at 0. Suppose then that |ξn| ≤ C−1

1 δ−2 and that |ξj| ≤ C−1
1 δ−1

when j < n; here C1 is a large constant. Then

|f̂dσ(ξ)| =

∣∣∣∣∣
∫
Cδ

e−2πix·ξdσ(x)

∣∣∣∣∣
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=

∣∣∣∣∣
∫
Cδ

e−2πi(x−en)·ξdσ(x)

∣∣∣∣∣
≥

∫
Cδ

cos(2π(x− en) · ξ)dσ(x).

Our conditions on ξ imply if C1 is large enough that |(x− en) · ξ| ≤ π
3
, say, for all x ∈ Cδ.

Accordingly,

|f̂dσ(ξ)| ≥ 1

2
|Cδ| ≈ δn−1.

Our set of ξ has volume about δ−(n+1), so we conclude that

‖f̂dσ‖q & δn−1−n+1
q .

Comparing this estimate with (72) we find that if (70) holds then

δn−1−n+1
q . δ

n−1
2

uniformly in δ ∈ (0, 1]. Hence n− 1− n+1
q
≥ n−1

2
, i.e. q ≥ 2n+2

n−1
.

For future reference we record the following variant on the above example: if f is as
above and g = e2πix·ηTf , where η ∈ Rn and T is a rotation mapping en to v ∈ Sn−1, then
g is supported on

{x ∈ Sn−1 : 1− x · v ≤ δ2},
and

|ĝdσ| & δn−1

on a cylinder of length C−1
1 δ−2 and cross-section radius C−1

1 δ−1, centered at η and with
the axis parallel to v.

Before giving the proof of Theorem 7.1 we need to discuss convolution of a Schwartz
function with a measure, since this wasn’t previously considered. Let µ ∈M(Rn); assume
µ has compact support for simplicity, although this assumption is not really needed.
Define

φ ∗ µ(x) =

∫
φ(x− y)dµ(y).

Observe that φ ∗ µ is C∞, since differentiation under the integral sign is justified as in
Lemma 3.1.

It is convenient to use the notation µ̌ for µ̂(−x). We need to extend some of our
formulas to the present context. In particular the following extends (28) since if µ ∈ S
then the Fourier transform of µ̌ is µ by Theorem 3.4:

φ̂µ̌ = φ̂ ∗ µ when φ ∈ S, (73)

φ̂µ = φ̂ ∗ µ̂ when φ ∈ S. (74)
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Notice that (73) can be interpreted naively: Proposition 1.3 and the product rule
imply that φµ̌ is a Schwartz function. To prove (73), by uniqueness of distributional
Fourier transforms it suffices to show that∫

ψ̂φµ̌ =

∫
ψ(φ̂ ∗ µ)

if ψ is another Schwartz function. This is done as follows. Denote Tx = −x, then∫
ψ̂(x)φ(x)µ̂(−x)dx =

∫
ψ̂(−x)φ(−x)µ̂(x)dx

=

∫
((ψ̂φ) ◦ T )µ̂

=

∫
((ψ̂φ) ◦ T )̂ dµ by the duality relation

=

∫
̂

(ψ̂ ◦ T ) ∗ ̂(φ ◦ T )dµ

=

∫
ψ ∗ (φ̂ ◦ T )dµ

=

∫ ∫
ψ(y)φ̂(−x+ y)dydµ(x)

=

∫
ψ(y)φ̂ ∗ µ(y)dy.

For (74), again let ψ be another Schwartz function. Then∫
φ̂µψdx =

∫
ψ̂φdµ by the duality relation

=

∫
̂̌φ ∗ ψdµ

=

∫
(φ̌ ∗ ψ)µ̂dx by the duality relation

=

∫
(φ̂ ∗ µ̂)ψdx.

The last line may be seen by writing out the definition of the convolution and using
Fubini’s theorem. Since this worked for all ψ ∈ S, we get (74).

Lemma 7.2 Let f, g ∈ S, and let µ be a (say) compactly supported measure. Then∫
f̂ ĝdµ =

∫
(µ̂ ∗ g) · fdx. (75)

Proof Recall that
ˆ̃g = ĝ,

44



so that
ˆ̂g = ˆ̂̃g = g

by the inversion theorem. Now apply the duality relation and (74), obtaining∫
f̂ ĝdµ =

∫
f · (ĝµ)̂ dx

=

∫
f · (g ∗ µ̂)dx

as claimed. �

Lemma 7.3 Let µ be a finite positive measure. The following are equivalent for any q
and any C.

1. ‖f̂dµ‖q ≤ C‖f‖2, f ∈ L2(dµ).
2. ‖ĝ‖L2(dµ) ≤ C‖g‖q′, g ∈ S.
3. ‖µ̂ ∗ f‖q ≤ C2‖f‖q′, f ∈ S.

Proof Let g ∈ S, f ∈ L2(dµ). By the duality relation∫
ĝfdµ =

∫
f̂dµ · gdx. (76)

If 1. holds, then the right side of (76) is ≤ ‖g‖q′‖f̂dµ‖q ≤ C‖g‖q′‖f‖L2(dµ) for any
f ∈ L2(dµ). Hence so is the left side. This proves 2. by duality. If 2. holds then the left
side is ≤ ‖ĝ‖L2(dµ)‖f‖L2(dµ) ≤ C‖g‖q′‖f‖L2(dµ) for g ∈ S. Hence so is the right side. Since

S is dense in Lq
′
, this proves 1. by duality.

If 3. holds, then the right side of (75) is ≤ C2‖f‖2
q′ when f = g ∈ S. Hence so is

the left side, which proves 2. If 2. holds then, for any f, g ∈ S, using also the Schwartz
inequality the left side of (75) is ≤ C2‖f‖q′‖g‖q′. Hence the right side of (75) is also
≤ C2‖f‖q′‖g‖q′, which proves 3. by duality. �

Remark One can fit lemma 7.3 into the abstract setup

T : L2 → Lq ⇔ T ∗ : Lq
′ → L2 ⇔ TT ∗ : Lq

′ → Lq.

This is the standard way to think about the lemma, although it is technically a bit easier
to present the proof in the above ad hoc manner. Namely, if T is the operator f → f̂dσ
then T ∗ is the operator f → f̂ , where we regard f̂ as being defined on the measure space
associated to µ, and TT ∗ is convolution with µ̂.

Proof of Theorem 7.1 We will not give a complete proof; we only prove (70) when
q > 2n+2

n−1
instead of ≥. For the endpoint, see for example [35], [9], [32], [33].

We will show that if q > 2n+2
n−1

, then

‖σ̂ ∗ f‖q ≤ Cq‖f‖q′, (77)
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which suffices by Lemma 7.3.
The relevant properties of σ will be

σ(D(x, r)) . rn−1, (78)

which reflects the n− 1-dimensionality of the sphere, and the bound

|σ̂(ξ)| . (1 + |ξ|)−n−1
2 (79)

from Corollary 6.6.
Let φ be a C∞ function with the following properties:

suppφ ⊂ {x :
1

4
≤ x ≤ 1},

if |x| ≥ 1 then
∑
j≥0

φ(2−jx) = 1.

Such a function may be obtained as follows: let χ be a C∞ function which is equal to
1 when |x| ≥ 1 and to 0 when |x| ≤ 1

2
, and let φ(x) = χ(2x)− χ(x).

We now cut up σ̂ as follows:

σ̂ = K−∞ +

∞∑
j=0

Kj ,

where
Kj(x) = φ(2−jx)σ̂(x),

K−∞(x) = (1−
∞∑
j=0

φ(2−jx))σ̂.

Then K−∞ is a C∞0 function, so

‖K−∞ ∗ f‖q . ‖f‖p

by Young’s inequality, provided q ≥ p. In particular, since q > 2 we may take p = q′.
We now consider the terms in the sum. The logic will be that we estimate convolution

with Kj as an operator from L1 to L∞ and from L2 to L2, and then we use Riesz-Thorin.
We have

‖Kj‖∞ . 2−j
n−1

2

by (79). Using the trivial bound ‖Kj ∗ f‖∞ ≤ ‖Kj‖∞‖f‖1 we conclude our L1 → L∞

bound,

‖Kj ∗ f‖∞ . 2−j
n−1

2 ‖f‖1. (80)

On the other hand, we can use (78) to estimate K̂j . Namely, let ψ = φ̂. Note also that
σ̂ = σ̌, since σ and therefore σ̂ are invariant under the reflection x → −x. Accordingly,
we have

K̂j = ψ2−j ∗ σ,
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using (73) and the fact that φ̂ε = φ̂ε. Since ψ ∈ S, it follows that

|K̂j(ξ)| ≤ CN2jn
∫

(1 + 2j|ξ − η|)−Ndσ(η)

for any fixed N <∞. Therefore

|K̂j(ξ)| ≤ CN2jn
(∫

D(ξ,2−j)

(1 + 2j|ξ − η|)−Ndσ(η)

+
∑
k≥0

∫
D(ξ,2k+1−j)\D(ξ,2k−j)

(1 + 2j|ξ − η|)−Ndσ(η)

)

≤ CN2jn

(
σ(D(ξ, 2−j)) +

∑
k≥0

2−Nkσ(D(ξ, 2k+1−j)\D(ξ, 2k−j))

)

. 2jn

(
2−j(n−1) +

∑
k≥0

2−Nk2(n−1)(k−j)

)
. 2j,

where we used (78) at the next to last line, and at the last line we fixed N to be equal to
n and summed a geometric series. Thus

‖K̂j‖∞ . 2j. (81)

Now we mention the trivial but important fact that

‖K ∗ f‖2 ≤ ‖K̂‖∞‖f‖2 (82)

if say K and f are in S. This follows since

‖K ∗ f‖2 = ‖K̂ ∗ f‖2

= ‖K̂f̂‖2

≤ ‖K̂‖∞‖f̂‖2

= ‖K̂‖∞‖f‖2.

Combining (81) and (82) we conclude

‖Kj ∗ f‖2 . 2j‖f‖2. (83)

Accordingly, by (80), (83) and Riesz-Thorin we have

‖Kj ∗ f‖q . 2jθ2−j
n−1

2
(1−θ)‖f‖q′

if θ
2

+ 1−θ
∞ = 1

q
. This works out to

‖Kj ∗ f‖q . 2j(
n+1
q
−n−1

2
)‖f‖q′ (84)
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for any q ∈ [2,∞]. If q > 2n+2
n−1

then the exponent n+1
q
− n−1

2
is negative, so we conclude

that ∑
j

‖Kj ∗ f‖q . ‖f‖q′.

Since f is a Schwartz function, the sum

K−∞ ∗ f +
∑
j

Kj ∗ f

is easily seen to converge pointwise to σ̂ ∗ f . We conclude using Fatou’s lemma that
‖σ̂ ∗ f‖q . ‖f‖q′, as claimed. �

Further remarks 1. Notice that the L2 estimate in the preceding argument was based
only on dimensionality considerations. This suggests that there should be an L2 bound
for f̂dσ valid under very general conditions.

Theorem 7.4 Let ν be a positive finite measure satisfying the estimate

ν(D(x, r)) ≤ Crα. (85)

Then there is a bound
‖f̂dν‖L2(D(0,R)) ≤ CR

n−α
2 ‖f‖L2(dν). (86)

The proof uses the following “generic” test for L2 boundedness.

Lemma 7.5 (Schur’s test) Let (X, µ) and (Y, ν) be measure spaces, and let K(x, y) be
a measurable function on X × Y with∫

X

|K(x, y)|dµ(x) ≤ A for each y, (87)

∫
Y

|K(x, y)|dν(y) ≤ B for each x. (88)

Define TKf(x) =
∫
K(x, y)f(y)dν(y). Then for f ∈ L2(dν) the integral defining TKf

converges a.e. (dµ(x)) and there is an estimate

‖TKf‖L2(dµ) ≤
√
AB‖f‖L2(dν). (89)

Proof It is possible to use Riesz-Thorin here, since (88) implies ‖TKf‖∞ ≤ B‖f‖∞
and (87) implies ‖TKf‖1 ≤ A‖f‖1.

A more “elementary” argument goes as follows. If a and b are positive numbers then
we have √

ab = min
ε∈(0,∞)

1

2
(εa+ ε−1b), (90)
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since ≤ is the arithmetic-geometric mean inequality and ≥ follows by taking ε =
√

b
a
.

To prove (89) it suffices to show that if ‖f‖L2(dµ) ≤ 1, ‖g‖L2(dν) ≤ 1, then∫ ∫
|K(x, y)||f(x)||g(y)|dµ(x)dν(y)≤

√
AB. (91)

To show (91), we estimate∫ ∫
|K(x, y)||f(x)||g(y)|dµ(x)dν(y)

=
1

2
min
ε

(
ε

∫ ∫
|K(x, y)||g(y)|2dµ(x)dν(y)

+ε−1

∫ ∫
|K(x, y)||f(x)|2dν(y)dµ(x)

)
≤ 1

2
min
ε

(
εA

∫
|g(y)|2dν(y) + ε−1B

∫
|f(x)|2dµ(x)

)
≤ 1

2
min
ε

(εA+ ε−1B)

=
√
AB.

�

To prove Theorem 7.4, let φ be an even Schwartz function which is ≥ 1 on the unit disc
and whose Fourier transform has compact support. (Exercise: show that such a function
exists.) In the usual way define φR−1(x) = φ(R−1x). Then

‖f̂dν‖L2(D(0,R)) ≤ ‖φR−1(x)f̂dν(−x)‖L2(dx)

= ‖φ̂R−1 ∗ (fdν)‖2

by (73) and Plancherel.
The last line is the L2(dx) norm of the function∫

Rnφ̂(R(x− y))f(y)dν(y).

We have estimates ∫
|Rnφ̂(R(x− y))|dx = ‖φ̂‖1 <∞

for each fixed y, by change of variables, and∫
|Rnφ̂(R(x− y))|dν(y) . Rn−α

for each fixed x, by (85) and the compact support of φ̂. By Lemma 7.5

‖
∫
Rnφ̂(R(x− y))f(y)dν(y)‖L2(dx) . R

n−α
2 ‖f‖L2(dν),
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and the proof is complete. �

2. Another remark is that it is possible to base the whole proof of Theorem 7.1 on the
stationary phase asymptotics in section 6, instead of explicitly using the dimensionality
of σ. This sort of argument has the obvious advantage that it is more flexible, since it
works also in other situations where the “convolution kernel” σ̂(x − y) is replaced by a
kernel K(x, y) satisfing appropriate conditions. See for example [29], [32], [33]. On the
other hand, it is more complicated and is not as relevant in connection with more delicate
questions such as the restriction conjecture, which is known to be false in most of the
more general situations (see [5], [26], [30]). We give a brief sketch omitting details. The
basic result is the so-called variable coefficient Plancherel theorem, due to Hörmander
[16].

Let φ be a real valued C∞ function defined on Rn × Rn, let a ∈ C∞0 (Rn × Rn) and
consider the “oscillatory integral operators”

Tλf(x) =

∫
e−πiλφ(x,y)a(x, y)f(y)dy. (92)

Since a has compact support, it is obvious that these map L2(Rn) to L2(Rn) with a
norm bound independent of λ, but we want to show that the norm decays in a suitable
way as λ→ ∞. As with the oscillatory integrals of section 6, this will not be the case if
φ is too degenerate. In the present situation, note that if φ depends on x only, then the

factor e−πiλφ in (92) may be taken outside the integral sign, so the norm is independent

of λ. Similarly, if φ depends on y only, then the factor e−πiλφ may be incorporated into
f . We conclude in fact that if φ(x, y) = a(x) + b(y), then ‖Tλ‖L2→L2 is independent of λ.
This strongly suggests that the appropriate nondegeneracy condition should involve the
“mixed Hessian”

H̃φ =

(
∂2φ

∂xi∂yj

)n
i,j=1

since the mixed Hessian vanishes identically if φ(x, y) = a(x) + b(y).

Theorem A (Hörmander) Assume that

det (H̃φ(x, y)) 6= 0

at all points (x, y) ∈ supp a. Then

‖Tλ‖L2→L2 ≤ Cλ−
n
2 .

Sketch of proof This is evidently related to stationary phase, but one cannot apply
stationary phase directly to the integral (92), since f isn’t smooth. Instead, one looks at
TλT

∗
λ which is an integral operator TK with kernel

K(x, y) =

∫
e−πiλ(φ(x,z)−φ(y,z))a(x, z)a(y, z)dz. (93)
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The assumption about the mixed Hessian guarantees that the phase function in (93) has
no critical points if x and y are close together. Using a version3 of “nonstationary phase”
one can obtain the estimate

∀N ∃CN : |K(x, y)| ≤ CN(1 + λ|x− y|)−N ,

provided |x − y| is less than a suitable constant. It follows that if a has small support
then ∫

|K(x, y)|dy . λ−n

for each fixed x, and similarly ∫
|K(x, y)|dx . λ−n

for each y. Then Schur’s test shows that ‖TλT ∗λ‖L2→L2 . λ−n, so ‖Tλ‖L2→L2 . λ−
n
2 . The

small support assumption on a can then be removed using a partition of unity. �.
It is possible to generalize this to the case where the rank of H̃φ is ≥ k, where

k ∈ {1, . . . , n}; just replace the exponent n
2

by k
2
. Furthermore, the compact support

assumption on a may be replaced by “proper support” (see the statement below), and fi-
nally one can obtain Lq

′ → Lq estimates by interpolating with the trivial ‖Tλ‖L1→L∞ ≤ 1.
Here then is the variable coefficient Plancherel, souped up in a manner which makes it
applicable in connection with Stein-Tomas. See the references mentioned above.

Theorem B (Hörmander) Assume that a is a C∞ function supported on the set {(x, y) ∈
Rn ×Rn : |x− y| ≤ C} whose all partial derivatives are bounded. Let φ be a real valued
C∞ function defined on a neighborhood of supp a, all of whose partial derivatives are
bounded, and such that the rank of H̃φ(x, y) is at least k everywhere. Assume further-
more that the sum of the absolute values of the determinants of the k by k minors of H̃φ

is bounded away from zero. Then there is a bound

‖Tλ‖Lq′→Lq ≤ Cλ−
k
q

when 2 ≤ q ≤ ∞.

Now look back at the proof we gave for Theorem 7.1. The main point was to obtain
the bound (84). Now, Kj(x) is the real part of

K̃j(x)
def
= φ(2−jx)a(|x|)e−2πi|x|,

where a satisfies the estimates in Corollary 6.6. Accordingly, it suffices to prove (84) with
Kj replaced by K̃j . Let Tj be convolution with K̃j , and rescale by 2j; thus we consider
the operator

f → Tj(f2j )2−j .

3One needs something a bit more quantitative than our Proposition 6.1; the necessary lemma is best
proved by integration by parts. See for example [32].
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This is an integral operator Sj whose kernel is

2njφ(x− y)a(2j|x− y|)e−2πi2j |x−y|.

We want to apply Theorem B to Sj ; toward this end we make the following observa-
tions.

(i) From the estimates in Corollary 6.6, we see that the functions

2
n−1

2
jφ(x− y)a(2j|x− y|)

have derivative bounds which are independent of j, and clearly they are supported in
1
4
≤ |x− y| ≤ 1.

(ii) The mixed Hessian of the function |x − y| has rank n − 1. This is a calculation
which we leave to the reader, just noting that the exceptional direction corresponds to
the direction along the line segment xy.

It follows that the operators 2−
n+1

2
jSj satisfy the hypotheses of Theorem B with k =

n− 1, uniformly in j, if we take λ = 2j+1. Accordingly,

‖Sjf‖q . 2(n+1
2
−n−1

q
)j‖f‖q′,

and therefore using change of variables

2−
n
q
j‖Tjf‖q . 2(n+1

2
−n−1

q
)j2
− n
q′ j‖f‖q′,

i.e.
‖Tjf‖q . 2(n+1

q
−n−1

2
)j‖f‖q′,

which is (84). �

Exercise: Use Theorem A for an appropriate phase function, and a rescaling argument
of the preceding type, to prove the bound

‖f̂‖2 ≤ C‖f‖2.

This explains the name “variable coefficient Plancherel theorem”.

8. Hausdorff measures

Fix α > 0, and let E ⊂ Rn. For ε > 0, one defines

Hεα(E) = inf(

∞∑
j=1

rαj ),
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where the infimum is taken over all countable coverings of E by discs D(xj , rj) with rj < ε.
It is clear that Hεα(E) increases as ε decreases, and we define

Hα(E) = lim
ε→0

Hεα(E).

It is also clear that Hεα(E) ≤ Hεβ (E) if α > β and ε ≤ 1; thus

Hα(E) is a nonincreasing function of α. (94)

Remarks 1. If H1
α(E) = 0, then Hα(E) = 0. This follows readily from the definition,

since a covering showing that H1
α(E) < δ will necessarily consist of discs of radius < δ

1
α .

2. It is also clear that Hα(E) = 0 for all E if α > n, since one can then cover Rn by
discs D(xj , rj) with

∑
j r

α
j arbitrarily small.

Lemma 8.1 There is a unique number α0, called the Hausdorff dimension of E or
dimE, such that Hα(E) =∞ if α < α0 and Hα(E) = 0 if α > α0.

Proof Define α0 to be the supremum of all α such that Hα(E) =∞. Thus Hα(E) =∞
if α < α0, by (94). Suppose α > α0. Let β ∈ (α0, α). Define M = 1 + Hβ(E) < ∞. If

ε > 0, then we have a covering by discs with
∑

j r
β
j ≤M and rj < ε. So∑

j

rαj ≤ εα−β
∑
j

rβj ≤ εα−βM

which goes to 0 as ε→ 0. Thus Hα(E) = 0. �.

Further remarks 1. The set function Hα may be seen to be countably additive on Borel
sets, i.e. defines a Borel measure. See standard references in the area like [6], [10], [25].
This is part of the reason one considers Hα instead of, say, H1

α. Notice in this connection
that if E and F are disjoint compact sets, then evidently Hα(E ∪ F ) = Hα(E) +Hα(F ).
This statement is already false for H1

α.

2. The Borel measure Hn coincides with 1
ω

times Lebesgue measure, where ω is the
volume of the unit ball. If α < n, then Hα is non-sigma finite; this follows e.g. by
Lemma 8.1, which implies that any set with nonzero Lebesgue measure will have infinite
Hα-measure.

Examples The canonical example is the usual 1
3
-Cantor set on the line. This has a

covering by 2n intervals of length 3−n, so it has finite H log 2
log 3

-measure. It is not difficult to

show that in fact its H log 2
log 3

-measure is nonzero; this can be done geometrically, or one can

apply Proposition 8.2 below to the Cantor measure. In particular, the dimension of the
Cantor set is log 2

log 3
.
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Now consider instead a Cantor set with variable dissection ratios {εn}, i.e. one starts
with the interval [0, 1], removes the middle ε1 proportion, then removes the middle ε2
proportion of each of the resulting intervals and so forth. If we assume that εn+1 ≤ εn,
and let ε = limn→∞ εn, then it is not hard to show that the dimension of the resulting set
E will be log 2

log( 2
1−ε )

. In particular, if εn → 0 then dimE = 1.

On the other hand, H1(E) will be positive only if
∑

n εn <∞, so this gives examples
of sets with zero Lebesgue measure but “full” Hausdorff dimension.

There are numerous other notions of dimension. We mention only one of them, the
Minkowski dimension, which is only defined for compact sets. Namely, if E is compact

then let Eδ = {x ∈ Rn : dist(x,E) < δ}. Let α0 be the supremum of all numbers α such
that, for some constant C,

|Eδ| ≥ Cδn−α

for all δ ∈ (0, 1]. Then α0 is called the lower Minkowski dimension and denoted dL(E).
Let α1 be the supremum of all numbers α such that, for some constant C,

|Eδ| ≥ Cδn−α

for a sequence of δ’s which converges to zero. Then α1 is called the upper Minkowski
dimension and denoted dU(E).

It would also be possible to define these like Hausdorff dimension but restricting to
coverings by discs all the same size, namely: define a set S to be δ-separated if any two
distict points x, y ∈ S satisfy |x− y| > δ. Let Eδ(E) (“δ-entropy on E”) be the maximal
possible cardinality for a δ-separated subset4 of E. Then it is not hard to show that

dL(E) = lim inf
δ→0

log Eδ(E)

log 1

δ
,

dU(E) = lim sup
δ→0

log Eδ(E)

log 1

δ
.

Notice that a countable set may have positive lower Minkowski dimension; for example,
the set { 1

n
}∞n=1 ∪ {0} has upper and lower Minkowski dimension 1

2
.

If E is a compact set, then let P (E) be the space of the probability measures supported
on E.

Proposition 8.2 Suppose E ⊂ Rn is compact. Assume that there is a µ ∈ P (E) with

µ(D(x, r)) ≤ Crα (95)

for a suitable constant C and all x ∈ Rn, r > 0. Then Hα(E) > 0. Conversely, if
Hα(E) > 0, there is a µ ∈ P (E) such that (95) holds.

4Exercise: show that Eδ(E) is comparable to the minimum number of δ-discs required to cover E
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Proof The first part is easy: let {D(xj, rj)} be any covering of E by discs. Then

1 = µ(E) ≤
∑
j

µ(D(xj , rj)) ≤ C
∑
j

rαj ,

which shows that Hα(E) ≥ C−1.
The proof of the converse involves constructing a suitable measure, which is most easily

done using dyadic cubes. Thus we let Qk be all cubes of side length `(Q) = 2−k whose
vertices are at points of 2−kZn. We can take these to be closed cubes, for definiteness.
It is standard to work with these in such contexts because of their nice combinatorics: if
Q ∈ Qk, then there is a unique Q̃ ∈ Qk−1 with Q ⊂ Q̃; furthermore if we fix Q1 ∈ Qk−1,
then Q1 is the union of those Q ∈ Qk with Q̃ = Q1, and the union is disjoint except for
edges. A dyadic cube is a cube which is in Qk for some k.

If Q is a dyadic cube, then clearly there is a disc D(x, r) with Q ⊂ D(x, r) and
r ≤ C`(Q). Likewise, if we fix D(x, r), then there are a bounded number of dyadic cubes
Q1 . . . QC with `(Qj) ≤ Cr and whose union contains D(x, r). From these properties, it
is easy to see that the definition of Hausdorff measure and also the property (95) could
equally well be given in terms of dyadic cubes. Thus, except for the values of the constants,

µ satisfies (95)⇔ µ(Q) ≤ C`(Q)α for all dyadic cubes Q.

Furthermore, if we define

hεα(E) = inf(
∑
Q∈F

`(Q)α : E ⊂
⋃
Q∈F

Q),

where F runs over all coverings of E by dyadic cubes of side length `(Q) < ε, and

hα(E) = lim
ε→0

hεα(E),

then we have
C−1Hεα(E) ≤ hεα(E) ≤ CHεα(E),

therefore
hα(E) > 0⇔ Hα(E) > 0.

We return now to the proof of Proposition 8.2. We may assume that E is contained
in the unit cube [0, 1] × . . .× [0, 1]. By the preceding remarks and Remark 1. above we
may assume that h1

α(E) > 0, and it suffices to find µ ∈ P (E) so that µ(Q) ≤ C`(Q)α for
all dyadic cubes Q with `(Q) ≤ 1. We now make a further reduction.

Claim It suffices to find, for each fixed m ∈ Z+, a positive measure µ with the following
properties:

µ is supported on the union of the cubes Q ∈ Qm which intersect E; (96)
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‖µ‖ ≥ C−1; (97)

µ(Q) ≤ `(Q)α for all dyadic cubes with `(Q) ≥ 2−m. (98)

Here C is independent of m.

Namely, if this can be done, then denote the measures satisfying (96), (97), (98) by
µm. (98) implies a bound on ‖µm‖, so there is a weak* limit point µ. (96) then shows
that µ is supported on E, (98) shows that µ(Q) ≤ `(Q)α for all dyadic cubes, and (97)
shows that ‖µ‖ ≥ C−1. Accordingly, a suitable scalar multiple of µ gives us the necessary
probability measure.

There are a number of ways of constructing the measures satisfying (96), (97), (98).
Roughly, the issue is that (97) and (98) are competing conditions, and one has to find a
measure µ with the appropriate support and with total mass roughly as large as possible
given that (97) holds. This can be done for example by using finite dimensional convexity
theory (exercise!). We present a different (more constructive) argument taken from [6],
Chapter 2.

We fix m, and will construct a finite sequence of measures νm, . . . , ν0, in that order;
ν0 will be the measure we want.

Start by defining νm to be the unique measure with the following properties.

1. On each Q ∈ Qm, νm is a scalar multiple of Lebesgue measure.
2. If Q ∈ Qm and Q ∩E = ∅, then νm(Q) = 0.
3. If Q ∈ Qm and Q ∩E 6= ∅, then νm(Q) = 2−mα.

If we set k = m, then νk has the following properties: it is absolutely continuous to
Lebesgue measure, and

νk(Q) ≤ `(Q)α if Q is a dyadic cube with side 2−j, k ≤ j ≤ m; (99)

if Q1 is a dyadic cube of side 2−k, then there is a covering FQ1 of Q1 ∩ E by

dyadic cubes contained in Q1 such that νk(Q1) ≥
∑

Q∈FQ1
`(Q)α. (100)

Assume now that 1 ≤ k ≤ m and we have constructed an absolutely continuous
measure νk with properties (96), (99) and (100). We will construct νk−1 having these
same properties, where in (99) and (100) k is replaced by k − 1. Namely, to define νk−1

it suffices to define νk−1(Y ) when Y is contained in a cube Q ∈ Qk−1. Fix Q ∈ Qk−1.
Consider two cases.

(i) νk(Q) ≤ `(Q)α. In this case we let νk−1 agree with νk on subsets of Q.

(ii) νk(Q) ≥ `(Q)α. In this case we let νk−1 agree with cνk on subsets of Q, where c is

the scalar 2−(k−1)α

νk(Q)
.
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Notice that νk−1(Y ) ≤ νk(Y ) for any set Y , and furthermore νk−1(Q) ≤ `(Q)α if
Q ∈ Qk−1. These properties and (99) for νk give (99) for νk−1, and (96) for νk−1 follows
trivially from (96) for νk. To see (100) for νk−1, fix Q ∈ Qk−1. If Q is as in case (ii), then
νk−1(Q) = `(Q)α, so we can use the covering by the singleton {Q}. If Q is as in case (i),
then for each of the cubes Qj ∈ Qk whose union is Q we have the covering of Qj ∩ E
associated with (100) for νk. Since νk and νk−1 agree on subsets of Q, we can simply
put these coverings together to obtain a suitable covering of Q ∩ E. This concludes the
inductive step from νk to νk−1.

We therefore have constructed ν0. It has properties (96), (98) (since for ν0 this is
equivalent to (99)), and by (100) and the definition of h1

α it has property (99). �

Let us now define the α-dimensional energy of a (positive) measure µ with compact
support5 by the formula

Iα(µ) =

∫ ∫
|x− y|−αdµ(x)dµ(y).

We always assume that 0 < α < n. We also define

V α
µ (y) =

∫
|x− y|−αdµ(x).

Thus

Iα(µ) =

∫
V α
µ dµ. (101)

The “potential” V α
µ is very important in other contexts (namely elliptic theory, since

it is harmonic away from suppµ when α = n − 2) but less important than the energy
here. Nevertheless we will use it in a technical way below. Notice that it is actually the
convolution of the function |x|−α with the measure µ.

Roughly, one expects a measure to have Iα(µ) <∞ if and only if it satisfies (95); this
precise statement is false, but we see below that nevertheless the Hausdorff dimension of
a compact set can be defined in terms of the energies of measures in P (E).

Lemma 8.3 (i) If µ is a probability measure with compact support satisfying (95), then
Iβ(µ) <∞ for all β < α.

(ii) Conversely, if µ is a probability measure with compact support and with Iα(µ) <
∞, then there is another probability measure ν such that ν(X) ≤ 2µ(X) for all sets X
and such that ν satisfies (95).

Proof (i) We can assume that the diameter of the support of µ is ≤ 1. Then

Vµ
β(x) .

∞∑
j=0

2jβµ(D(x, 2−j)).

5The compact support assumption is not needed; it is included to simplify the presentation.
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Accordingly, if µ satisfies (95), and β < α, then

Vµ
β(x) .

∞∑
j=0

2jβ2−jα

. 1.

It follows by (101) that Iα(µ) <∞.
(ii) Let F be the set of points x such that V α

µ (x) ≤ 2Iα(µ). Then µ(F ) ≥ 1
2

by (101).
Let χF be the indicator function of F and let ν(X) = µ(X ∩ F )/µ(F ). We need to show
that ν satisfies (95). Suppose first that x ∈ F . If r > 0 then

r−αν(D(x, r)) ≤ V α
ν (x) ≤ 2V α

µ (x) ≤ 4Iα(µ).

This verifies (95) when x ∈ F . For general x, consider two cases. If r is such that
D(x, r) ∩ F = ∅ then evidently ν(D(x, r)) = 0. If D(x, r) ∩ F 6= ∅, let y ∈ D(x, r) ∩ F .
Then ν(D(x, r)) ≤ ν(D(y, 2r)) . rα by the first part of the proof. �

Proposition 8.4 If E is compact then the Hausdorff dimension of E coincides with the
number

sup{α : ∃µ ∈ P (E) with Iα(µ) <∞}.

Proof Denote the above supremum by s. If β < s then by (ii) of Lemma 8.3 E supports
a measure with µ(D(x, r)) ≤ Crβ. Then by Proposition 8.2 Hβ(E) > 0, so β ≤ dimE.
So s ≤ dimE. Conversely, if β < dimE then by Proposition 8.2 E supports a measure
with µ(D(x, r)) ≤ Crβ+ε for ε > 0 small enough. Then Iβ(µ) < ∞, so β ≤ s, which
shows that dimE ≤ s. �

The energy is a quadratic expression in µ and is therefore susceptible to Fourier trans-
form arguments. Indeed, the following formula is essentially just Lemma 7.2 combined
with the formula for the Fourier transform of |x|−α.

Proposition 8.5 Let µ be a positive measure with compact support and 0 < α < n.
Then ∫ ∫

|x− y|−αdµ(x)dµ(y) = cα

∫
|µ̂(ξ)|2|ξ|−(n−α)dξ, (102)

where cα =
γ(n−a

2
)πa−

n
2

γ(a
2

)
.

Proof Suppose first that f ∈ L1 is real and even, and that dµ(x) = φ(x)dx with φ ∈ S.
Then we have ∫

f(x− y)dµ(x)dµ(y) =

∫
|µ̂(ξ)|2f̂(ξ)dξ (103)

This is proved like Lemma 7.2 using (73) instead of (74). Now fix φ. Then both sides
of (103) are easily seen to define continuous linear maps from f ∈ L2 to R. Accordingly,
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(103) remains valid when f ∈ L1 + L2, φ ∈ S. Applying Proposition 4.1, we conclude
(102) if dµ(x) = φ(x)dx, φ ∈ S. To pass to general measures, we use the following fact.

Lemma 8.6 Let φ be any radial decreasing Schwartz function with L1 norm 1, and let
0 < α < n. Then ∫

|x− y|−αφ(y)dy . |x|−α,

where the implicit constant depends only on α, not on the choice of φ.

We sketch the proof as follows: one can easily reduce to the case where φ = 1
|D(0,R)|χD(0,R),

and this case can be done by explicit calculation. �

Now let φ(x) = e−π|x|
2
. We have then φε ∗ µ ∈ S, so∫ ∫ (∫ ∫
|x− y|−αφε(x− z)φε(y − w)dxdy

)
dµ(z)dµ(w)

= cα
∫
|µ̂(ξ)|2|φ̂(εξ)|2|ξ|−(n−α)dξ.

(104)

Now let ε → 0. On the left side of (104), the expression inside the parentheses
converges pointwise to |z−w|−α using a minor variant on Lemma 3.2. If Iα(µ) <∞ then
the convergence is dominated in view of the preceding lemma, so the integrals on the left
side converge to Iα(µ). If Iα(µ) = ∞, then this remains true using Fatou’s lemma. On
the right hand side of (104) we can argue similarly: the integrands converge pointwise
to |µ̂(ξ)|2|ξ|−(n−α). If

∫
|µ̂(ξ)|2|ξ|−(n−α)dξ < ∞ then the convergence is dominated since

the factors φ̂(εξ) are bounded by 1, so the integrals converge to
∫
|µ̂(ξ)|2|ξ|−(n−α)dξ. If∫

|µ̂(ξ)|2|ξ|−(n−α)dξ = ∞ then this remains true by Fatou’s lemma. Accordingly, we can
pass to the limit from (104) to obtain the proposition. �

Corollary 8.7 Suppose µ is a compactly supported probability measure on Rn with

|µ̂(ξ)| ≤ C|ξ|−β (105)

for some 0 < β < n/2, or more generally that (105) is true in the sense of L2 means:∫
D(0,N)

|µ̂(ξ)|2dξ ≤ CNn−2β. (106)

Then the dimension of the support of µ is at least 2β.

Proof It suffices by Proposition 8.4 to show that if (106) holds then Iα(µ) <∞ for all
α < 2β. However,∫

|ξ|≥1

|µ̂(ξ)|2|ξ|−(n−α)dξ .
∞∑
j=0

2−j(n−α)

∫
2j≤|ξ|≤2j+1

|µ̂(ξ)|2dξ

.
∞∑
j=0

2−j(n−α)2j(n−2β)

< ∞
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if α < 2β and (106) holds. Observe also that the integral over |ξ| ≤ 1 is finite since
|µ̂(ξ)| ≤ ‖µ‖ = 1. This completes the proof in view of Proposition 8.5. �

One can ask the converse question, whether a compact set with dimension α must
support a measure µ with

|µ̂(ξ)| ≤ Cε(1 + |ξ|)−α2 +ε (107)

for all ε > 0. The answer is (emphatically) no6. Indeed, there are many sets with positive
dimension which do not support any measure whose Fourier transform goes to zero as
|ξ| → ∞. The easiest way to see this is to consider the line segment E = [0, 1]×{0} ⊂ R2.
E has dimension 1, but if µ is a measure supported on E then µ̂(ξ) depends on ξ1 only,
so it cannot go to zero at ∞. If one considers only the case n = 1, this question is
related to the classical question of “sets of uniqueness”. See e.g. [28], [40]. One can show
for example that the standard 1

3
Cantor set does not support any measure such that µ̂

vanishes at ∞.
Indeed, it is nontrivial to show that a “noncounterexample” exists, i.e. a set E with

given dimension α which supports a measure satisfying (107). We describe a construction
of such a set due to R. Kaufman in the next section.

As a typical application (which is also important in its own right) we now discuss a
special case of Marstrand’s projection theorem. Let e be a unit vector in Rn and E ⊂ Rn
a compact set. The projection Pe(E) is the set {x · e : x ∈ E}. We want to relate the
dimensions of E and of its projections. Notice first of all that dimPeE ≤ dimE; this
follows from the definition of dimension and the fact that the projection Pe is a Lipschitz
function.

A reasonable example, although not very typical, is a smooth curve in R2. This is
one-dimensional, and most of its projection will be also one-dimensional. However, if the
curve is a line, then one of its projections will be just a point.

Theorem 8.8 (Marstrand’s projection theorem for one-dimensional projections) As-
sume that E ⊂ Rn is compact and dimE = α. Then

(i) If α ≤ 1 then for a.e. e ∈ Sn−1 we have dimPeE = α.
(ii) If α > 1 then for a.e. e ∈ Sn−1 the projection PeE has positive one-dimensional

Lebesgue measure.

Proof If µ is a measure supported on E, e ∈ Sn−1, then the projected measure µe is
the measure on R defined by ∫

fdµe =

∫
f(x · e)dµ(x)

for continuous f . Notice that µ̂e may readily be calculated from this definition:

µ̂e(k) =

∫
e−2πikx·edµ(x)

6On the other hand, if one interprets decay in an L2 averaged sense the answer becomes yes, because
the calculation in the proof of the above corollary is reversible.
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= µ̂(ke).

Let α < dimE, and let µ be a measure supported on E with Iα(µ) < ∞. We have
then ∫

|µ̂(ke)|2|k|−1+αdkdσ(e) <∞ (108)

by Proposition 8.5 and polar coordinates. Thus, for a.e. e we have∫
|µ̂(ke)|2|k|−1+αdk <∞.

It follows by Proposition 8.5 with n = 1 that for a.e. e the projected measure µe has
finite α-dimensional energy. This and Proposition 8.4 give part (i), since µe is supported
on the projected set PeE. For part (ii), we note that if dimE > 1 we can take α = 1 in
(108). Thus µ̂e is in L2 for almost all e. By Theorem 3.13, this condition implies that
µe has an L2 density, and in particular is absolutely continuous with respect to Lebesgue
measure. Accordingly PeE must have positive Lebesgue measure. �

Remark Theorem 8.8 has a natural generalization to k-dimensional instead of 1-
dimensional projections, which is proved in the same way. See [10].

9. Sets with maximal Fourier dimension, and distance sets

A. Sets with maximal Fourier dimension
Jarnik’s theorem is the following Proposition 9A1. Fix a number α > 0, and let

Eα = {x ∈ R : ∃ infinitely many rationals a
q

such that |x− a

q
| ≤ q−(2+α)}.

Proposition 9A1 The Hausdorff dimension of Eα is equal to 2
2+α

.

Proof We show only that dimEα ≤ 2
2+α

. The converse inequality is not much harder
(see [10]) but we have no need to give a proof of it since it follows from Theorem 9A2
below using Corollary 8.7.

It suffices to prove the upper bound for Eα ∩ [−N,N ]. Consider the set of intervals
Iaq = (a

q
− q−(2+α), a

q
+ q−(2+α)), where 0 ≤ a ≤ Nq are integers. Then∑

q>q0

∑
a

|Iaq|β ≈
∑
q>q0

q · q−β(2+α),

which is finite and goes to 0 as q0 →∞ if β > 2
2+α

. For any given q0 the set {Iaq : q > q0}
covers Eα∩[−N,N ], which therefore has Hβ(Eα∩[−N,N ]) = 0 when β > 2

2+α
, as claimed.

�.
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Theorem 9A2 (Kaufman [21]). For any α > 0 there is a positive measure µ supported
on a subset of Eα such that

|µ̂(ξ)| ≤ Cε|ξ|−
1

2+α
+ε (109)

for all ε > 0.

This shows then that Corollary 8.7 is best possible of its type.
The proof is most naturally done using periodic functions, so we start with the fol-

lowing general remarks concerning “periodization” and “deperiodization”. Let Tn be the
n-torus which we regard as [0, 1]× . . .× [0, 1] with edges identified; thus a function on Tn
is the same as a function on Rn periodic for the lattice Zn.

If f ∈ L1(Tn) then one defines its Fourier coefficients by

f̂(k) =

∫
Tn

f(x)e−2πik·xdx, k ∈ Zn

and one also makes the analogous definition for measures. If f is smooth then one has
|f̂(k)| ≤ CN |k|−N for all N and

∑
k∈Zn f̂(k)e2πik·x = f(x).

Also, if f ∈ L1(Rn) one defines its periodization by

fper(x) =
∑
ν∈Zn

f(x− ν).

Then fper ∈ L1(Tn), and we have

Lemma 9A3 If k ∈ Zn then f̂per(k) = f̂(k).

Proof

f̂(k) =

∫
Rn

f(x)e−2πik·xdx

=
∑
ν∈Zn

∫
[0,1]×...×[0,1]+ν

f(x)e−2πik·xdx

=
∑
ν∈Zn

∫
[0,1]×...×[0,1]

f(x− ν)e−2πik·(x−ν)dx

=

∫
[0,1]×...×[0,1]

∑
ν∈Zn

f(x− ν)e−2πik·(x−ν)dx

=

∫
[0,1]×...×[0,1]

fper(x)e−2πik·xdx.

At the last line we used that e−2πik·ν = 1. �
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Suppose now that f is a smooth function on Tn; regard it as a periodic function on
Rn. Let φ ∈ S and consider the function F (x) = φ(x)f(x). We have then

F̂ (ξ) =
∑
ν∈Zn

f̂(ν)

∫
e−2πi(ξ−ν)·xφ(x)dx

=
∑
ν∈Zn

f̂(ν)φ̂(ξ − ν).

This formula extends by a limiting argument to the case where the smooth function
f is replaced by a measure; we omit this argument7. Thus we have the following: let µ
be a measure on Tn, let φ ∈ S, and define a measure ν on Rn by

dν(x) = φ(x)dµ({x}), (110)

where {x} is the fractional part of x. Then for ξ ∈ Rn

ν̂(ξ) =
∑
k∈Zn

µ̂(k)φ̂(ξ − k). (111)

A corollary of this formula by simple estimates with absolutely convergent sums, using
the Schwartz decay of φ̂, is the following.

Lemma 9A4 If µ is a measure on Tn, satisfying

|µ̂(k)| ≤ C(1 + |k|)−α

for a certain α > 0, and if ν ∈M(Rn) is defined by (110), then

|ν̂(ξ)| ≤ C ′(1 + |ξ|)−α.

This can be proved by using (111) and considering the range |ξ − k| ≤ |ξ|/2 and its
complement separately. The details are left to the reader.

We now start to construct a measure on the 1-torus T, which will be used to prove
Theorem 9A2.

Let φ be a nonnegative C∞0 function on R supported in [−1, 1] and with
∫
φ = 1.

Define φε(x) = ε−1φ(ε−1x) and let Φε be the periodization of φε.
Let P(M) be the set of prime numbers which lie in the interval (M

2
,M ]. By the

prime number theorem, |P(M)| ≈ M
logM

for large M . If p ∈ P(M) then the function

Φεp(x)
def
= Φε(px) is again 1-periodic8 and we have

Φ̂εp(k) =

{
φ̂(εk

p
) if p | k,

0 otherwise.
(112)

7It is based on the fact that every measure on Tn is the weak∗ limit of a sequence of absolutely
continuous measures with smooth densities, which is a corollary e.g. of the Stone-Weierstrass theorem.

8Of course for fixed p it is p−1-periodic
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To see this, start from the formula

Φ̂ε(k) = φ̂ε(k) = φ̂(εk)

which follows from Lemma 9A3. Thus

Φε(x) =
∑
k

φ̂(εk)e2πik·x,

Φεp(x) =
∑
k

φ̂(εk)e2πikp·x,

which is equivalent to (112).
Now define

F =
1

|P(M)|
∑

p∈P(M)

Φεp .

Then F is smooth, 1-periodic, and
∫ 1

0
F = 1 (cf. (113)). Of course F depends on ε and

M but we suppress this dependence.

Lemma The Fourier coefficients of F behave as follows:

F̂ (0) = 1, (113)

F̂ (k) = 0 if 0 < |k| ≤ M
2
, (114)

for any N there is CN such that

|F̂ (k)| ≤ CN
log |k|
M

(
1 +

ε|k|
M

)−N
for all k 6= 0. (115)

Proof Both (113) and (114) are selfevident from (112). For (115) we use that a given
integer k > 0 has at most C log k

logM
different prime divisors in the interval (M/2,M ]. Hence,

by (112) and the Schwartz decay of φ̂,

|F̂ (k)| ≤ logM

M
· log |k|

logM
· CN

(
1 +

ε|k|
M

)−N
as claimed. �

We now make up our mind to choose ε = M−(1+α), and denote the function F by FM .
Thus we have the following

suppFM ⊂ {x : |x− a

p
| ≤ p−(2+α) for some p ∈ PM , a ∈ [0, p]}, (116)

|F̂M(k)| ≤ CN
log |k|
M

(
1 +

|k|
M2+α

)−N
, (117)
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and furthermore FM is nonnegative and satisfies (113) and (114).
It is easy to deduce from (117) with N = 1 that

|F̂M(k)| . |k|−
1

2+|α| log |k| (118)

uniformly in M . In view of (116) we could now try to prove the theorem by taking a
weak limit of the measures FMdx and then using Lemma 9A4. However this would not be
correct since the set Eα is not closed, and ((116) notwithstanding) there is no reason why
the weak limit should be supported on Eα. Indeed, (114) and (113) imply easily that the
weak limit is the Lebesgue measure. The following is the standard way of getting around
this kind of problem. It has something in common with the classical “Riesz product”
construction; see [25].

I. First consider a fixed smooth function ψ on T. We claim that if M has been chosen
large enough then

|ψ̂FM(k)− ψ̂(k)| .
{ log |k|

M
(1 + |k|

M2+α )−100 when |k| ≥ M
4

M−100 when |k| ≤ M
4

.
(119)

To see this, we write using (111) and (114), (113)

ψ̂FM(k)− ψ̂(k) =
∑

l∈Z ψ̂(l)F̂M(k − l)− ψ̂(k)

=
∑

l:|k−l|≥M/2 ψ̂(l)F̂M(k − l).
(120)

Since ψ is smooth, |ψ̂(l)| ≤ cN |l|−N for any N . Hence the right side of (120) is bounded
by

C max
l:|k−l|≥M/2

|F̂M(k − l)|.

Using (117), we can estimate this by

CN max
l:|k−l|≥M/2

log |k − l|
M

(
1 +
|k − l|
M2+α

)−N
. (121)

For any fixed N the function

f(t) =
log t

M

(
1 +

t

M2+α

)−N
is decreasing for t ≥M/10, provided that M is large enough. Thus (121) is bounded by

CN
log(M/2)

M

(
1 + M/2

M2+α

)−N
.M−100,

which proves the second part of (119). To prove the first part, we again use (120) and
consider separately the range |k − l| ≥ |k|/2 and its complement. For |k − l| ≥ |k|/2 we

65



argue as above, replacing |k− l| by |k|/2 in (121). For |k− l| ≤ |k|/2 we have |l| ≥ |k|/2,
hence the estimate follows easily using the decay of the Fourier coefficients of ψ and the
fact that |F̂M(k)| ≤ 1. The details are left to the reader.

II. Let

g(r) =

 r−
1

2+α log r when r ≥ r0,

r
− 1

2+α

0 log r0 when r ≤ r0,

where r0 > 1 is chosen so that g(r) ≤ 1 and g(r) is nonincreasing for all r. Then for any
ψ ∈ C∞(T), ε > 0, and M0 > 10r0 we can choose N large enough and a rapidly increasing
sequence M0 < M1 < M2 < . . . < MN so that

|ψ̂G(k)− ψ̂(k)| ≤ εg(|k|), (122)

where G = N−1(FM1 + . . . + FMN
). This can be done as follows. Denote EM(k) =

|ψ̂FM(k)− ψ̂(k)| for M ≥M1. We will need the following consequences of (119):

EM (k) ≤ Cg(|k|) if |k| ≥M/4, (123)

lim
|k|→∞

EM(k)

g(|k|) = 0 for any fixed M, (124)

EM(k) ≤ CM−100 if |k| ≤M/4, (125)

with the constant in (123), (125) independent of k,M .
Fix N so that C

N
< ε

100
. Observe that for all M large enough

CM−100 <
ε

100
g(M). (126)

We now choose M1,M2, . . . ,MN inductively so that (126) holds, Mj+1 > 4Mj and

1

N

j∑
i=1

Ei(k) ≤ ε

100
g(|k|) if |k| > Mj+1, (127)

which is possible by (124). We claim that (122) holds for this choice of Mj . To show this,
we start with

|ψ̂G(k)− ψ̂(k)| ≤ 1

N

N∑
i=1

Ei(k). (128)

Assume that Mj ≤ |k| ≤Mj+1 (the cases |k| ≤ M1 and |k| ≥MN are similar and are left
to the reader). By (127) we have

1

N

j−1∑
i=1

Ei(k) ≤ ε

100
g(|k|).
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We also see from (123), (125) that

1

N
Ej(k) ≤ C

N
g(|k|) ≤ ε

100
g(|k|),

1

N
Ej+1(k) ≤ C

N
g(|k|) +

C

N
M−100

j+1 ≤
ε

100
g(|k|) +

C

N
M−100

j+1 ,

1

N
Ei(k) ≤ C

N
M−100

i for j + 2 ≤ i ≤ N.

Thus the right side of (128) is bounded by

3ε

100
g(|k|) +

C

N

N∑
i=j+1

M−100
i .

By (126), we can estimate the last sum by

ε

100N

N∑
i=j+1

g(Mi) ≤
ε

100
g(Mj+1) ≤

ε

100
g(|k|),

which proves (122).
We note that the support properties of G are similar to those of the F ’s. Namely, it

follows from (116) that

suppG ⊂ {x : |x− a

p
| ≤ p−(2+α) for some p ∈ (

M1

2
,MN), a ∈ [0, p]}. (129)

III. We now construct inductively the functions Gm and Hm, m = 1, 2, . . ., as fol-
lows. Let G0 ≡ 1. If Gm has been constructed, we let Gm+1 be as in step II with
ψ = G0G1 . . . Gm, M0 ≥ 10r0 + m, and ε = 2−m−2. Then the functions Hm = G1 . . . Gm

satisfy
1

2
≤ Ĥm(0) ≤ 3

2

for each m and moreover the estimate (118) holds also for the H ’s, i.e.

|Ĥm(k)| . |k|− 1
2+α log |k|

IV. Now let µ be a weak∗ limit point of the sequence {Hmdx}. The support of µ will
be contained in the intersection of the supports of the {Gm}, hence by (129) it will be a

compact subset of Eα. From step III, we will have |µ̂(k)| . |k|− 1
2+α log |k|. The theorem

now follows by Lemma 9A4. �

B. Distance sets
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If E is a compact set in R2 (or in Rn), the distance set ∆(E) is defined as

∆(E) = {|x− y| : x, y ∈ E}.

One version of Falconer’s distance set problem is the conjecture that

E ⊂ R2, dimE > 1⇒ |∆(E)| > 0.

One can think of this as a version of the Marstrand projection theorem where the nonlinear
projection (x, y)→ |x− y| replaces the linear ones. In fact, it is also possible to make the
stronger conjecture that the “pinned” distance sets

{|x− y| : y ∈ E}

should have positive measure for some x ∈ E, or for a set of x ∈ E with large Hausdorff
dimension. This would be analogous to Theorem 8.8 with the nonlinear maps y → |x−y|
replacing the projections Pe.

Alternately, one can consider this problem as a continuous analogue of a well known
open problem in discrete geometry (Erdős’ distance set problem): prove that for finite sets
F ⊂ R2 there is a bound |∆(F )| ≥ C−1

ε |F |1−ε, ε > 0. The example F = Z2 ∩ D(0, N),
N → ∞ can be used to show that in Erdős’ problem one cannot take ε = 0, and a
related example [11] shows that in Falconer’s problem it does not suffice to assume that
H1(E) > 0. The current best result on Erdős’ problem is ε = 1

7
due to Solymosi and Tóth

[31] (there were many previous contributions), and on Falconer’s problem the current best
result is dimE > 4

3
due to myself [37] using previous work of Mattila [24] and Bourgain

[4].
The strongest results on Falconer’s problem have been proved using Fourier transforms

in a manner analogous to the proof of Theorem 8.8. We describe the basic strategy, which
is due to Mattila [24]. Given a measure µ on E, there is a natural way to put a measure
on ∆(E), namely push forward the measure µ×µ by the map ∆ : (x, y)→ |x− y|. If one
can show that the pushforward measure has an L2 Fourier transform, then ∆(E) must
have positive measure by Theorem 3.13.

In fact one proceeds slightly differently for technical reasons. Let µ be a measure in
R2, then [24] one associates to it the measure ν defined as follows. Let ν0 = ∆(µ×µ), i.e.∫

fdν0 =

∫
f(|x− y|)dµ(x)dµ(y).

Observe that ∫
t−

1
2dν(t) = I 1

2
(µ).

Thus if I 1
2
(µ) <∞, as we will always assume, then the measure we now define will be in

M(R). Namely, let

dν(t) = ei
π
4 t−

1
2dν0(t) + e−i

π
4 |t|− 1

2dν0(−t). (130)

Since ν0 is supported on ∆(E), ν is supported on ∆(E) ∪ −∆(E).
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Proposition 9B1 (Mattila [24]) Assume that Iα(µ) < ∞ for some α > 1. Then the
following are equivalent:

(i) ν̂ ∈ L2(R),
(ii) the estimate ∫ ∞

R=1

(

∫
|µ̂(Reiθ)|2dθ)2RdR <∞. (131)

Corollary 9B2 [24] Suppose that α > 1 is a number with the following property: if µ
is a positive compactly supported measure with Iα(µ) <∞ then∫

|µ̂(Reiθ)|2dθ ≤ CµR
−(2−α). (132)

Then any compact subset of R2 with dimension > α must have a positive measure distance
set.

Here and below we identify R2 with C in the obvious way.

Proof of the corollary Assume dimE > α. Then E supports a measure with Iα(µ) <
∞. We have∫ ∞

R=1

(

∫
|µ̂(Reiθ)|2dθ)2RdR .

∫ ∞
R=1

(

∫
|µ̂(Reiθ)|2dθ)R−(2−α)RdR

< ∞.

On the first line we used (132) to estimate one of the two angular integrals, and the last
line then follows by recognizing that the resulting expression corresponds to the Fourier
representation of the energy in Proposition 8.5. By Proposition 9B1 ∆(E) ∪ −∆(E)
supports a measure whose Fourier transform is in L2, which suffices by Theorem 3.13.�.

At the end of the section we will prove (132) in the easy case α = 3
2

where it follows
from the uncertainty principle; we believe this is due to P. Sjölin. It is known [37] that
(132) holds when α > 4

3
, and this is essentially sharp since (132) fails when α < 4

3
. The

negative result follows from a variant on the Knapp argument (Remark 4. in section 7);
this is due to [24], and is presented also in several other places, e.g. [37]. The positive
result requires more sophisticated Lp type arguments.

Before proving the proposition we record a few more formulas. Let σR be the angular
measure on the circle of radius R centered at zero; thus we are normalizing the arclength
measure on this circle to have total mass 2π. Let µ be any measure with compact support.
We then have ∫

|µ̂(Reiθ)|2dθ =

∫
σ̂R ∗ µdµ. (133)
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This is just one more instance of the formula which first appeared in Lemma 7.2 and was
used in the proof of Proposition 8.5. This version is contained in Lemma 7.2 if µ has a
Schwartz space density, and a limiting argument like the one in the proof of Proposition
8.4 shows that it holds for general µ. We also record the asymptotics for σ̂R which of
course follow from those for σ̂1 (Corollary 6.7) using dilations. Notice that the passage
from σ1 to σR preserves the total mass, i.e. essentially σR = (σ1)R. We conclude that

σ̂R(x) = 2(R|x|)− 1
2 cos(2π(R|x| − 1

8
)) +O((R|x|)− 3

2 ) (134)

when R|x| ≥ 1, and |σ̂R| is clearly also bounded independently of R.

Proof of the proposition From the definition of ν we have

ν̂(k) = ei
π
4

∫
|x− y|− 1

2 e−2πik|x−y|dµ(x)dµ(y)

+ e−i
π
4

∫
|x− y|− 1

2e2πik|x−y|dµ(x)dµ(y)

= 2

∫
|x− y|− 1

2 cos(2π(|k||x− y| − 1

8
))dµ(x)dµ(y).

On the other hand, by (133) and (134) we have∫
|µ̂(keiθ)|2dθ = |k|− 1

2

∫
2|x− y|− 1

2 cos(2π(|k||x− y| − 1

8
))dµ(x)dµ(y)

+O
(∫
|x−y|≥|k|−1

(|k||x− y|)− 3
2dµ(x)dµ(y)

)
+O

(∫
|x−y|≤|k|−1

(|k||x− y|)− 1
2dµ(x)dµ(y)

)
.

The last error term arises by comparing σ̂R, which is bounded, to the main term on the
right side of (134), which is O((R|x|)− 1

2 ), in the regime R|x| < 1. We may combine the
two error terms to obtain∫

|µ̂(keiθ)|2dθ = |k|− 1
2

∫
2|x− y|− 1

2 cos(2π(|k||x− y| − 1

8
))dµ(x)dµ(y)

+O(

∫
(|k||x− y|)−αdµ(x)dµ(y))

for any α ∈ [1
2
, 3

2
]. Therefore

ν̂(k) = |k| 12
∫
|µ̂(keiθ)|2dθ +O(|k| 12−αIα(µ)).

The error term here is evidently bounded by |k| 12−αIα(µ) for any α ∈ (1, 3
2
), and

therefore belongs to L2(|k| ≥ 1). We conclude then that ν̂ belongs to L2 on |k| ≥ 1 if
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and only if |k| 12
∫
|µ̂(keiθ)|2dθ does. This gives the proposition, since ν̂ (being the Fourier

transform of a measure) clearly belongs to L2 on [−1, 1]. �

Proposition 9B3 If α ≥ 1 and if µ is a positive measure with compact support9 then∫
|µ̂(Reiθ)|2dθ . Iα(µ)R−(α−1),

where the implicit constant depends on a bound for the radius of a disc centered at 0
which contains the support of µ. In particular, (132) holds if α = 3

2
.

Corollary 9B4 (originally due to Falconer [11] with a different proof) If dimE > 3
2

then the distance set of E has positive measure.

Proofs The corollary is immediate from the proposition and Corollary 9B2. The proof
of the proposition is very similar to the proofs of Bernstein’s inequality and of Theorem
7.4. We can evidently assume that R is large. Let φ be a radial C∞0 function whose

Fourier transform is ≥ 1 on the support of µ. Let dν(x) = (φ̂(x))−1dµ(x). Then it is
obvious (from the definition, not the Fourier representation) that Iα(ν) ≤ Iα(µ). Also
µ̂ = φ ∗ ν̂. Accordingly∫

|µ̂(Reiθ)|2dθ =

∫
|φ ∗ ν̂(Reiθ)|2dθ

.
∫
|φ(Reiθ − x)| |ν̂(x)|2dxdθ

=

∫
|ν̂(x)|2

∫
|φ(x−Reiθ)|dθdx

. R−1

∫
| |x|−R|≤C

|ν̂(x)|2dx

. R−1+2−α
∫
|x|−(2−α)|ν̂(x)|2dx

≈ R1−αIα(µ).

Here the second line follows by writing

|φ ∗ ν̂(Reiθ)| ≤
∫ √

|φ(Reiθ − x)| ·
√
|φ(Reiθ − x)||ν̂(x)|dx

and applying the Schwartz inequality. The fourth line follows since for fixed x the set of
θ where φ(x− Reiθ) 6= 0 has measure . R−1, and is empty if |x| − R is large. The proof
is complete. �

9Here, as opposed to in some previous situations, the compact support is important.
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Remark The exponent α − 1 is of course far from sharp; the sharp exponent is α
2

if
α > 1, 1

2
if α ∈ [1

2
, 1] and α if α < 1

2
.

Exercise Prove this in the case α ≤ 1. (This is a fairly hard exercise.)

Exercise Carry out Mattila’s construction (formula (130) and the preceding discussion)
in the case where µ is a measure in Rn instead of R2, and prove analogues of Proposition
9A1, Corollary 9A2, Proposition 9A3. Conclude that a set in Rn with dimension greater
than n+1

2
has a positive measure distance set. (See [24]. The dimension result is also due

originally to Falconer. The conjectured sharp exponent is n
2
.)

10. The Kakeya Problem

A Besicovitch set, or a Kakeya set, is a compact set E ⊂ Rn which contains a unit
line segment in every direction, i.e.

∀e ∈ Sn−1 ∃x ∈ Rn : x+ te ∈ E ∀t ∈ [−1

2
,
1

2
]. (135)

Theorem 10.1 (Besicovitch, 1920) If n ≥ 2, then there are Kakeya sets in Rn with
measure zero.

There are many variants on Besicovitch’s construction in the literature, cf. [10], Chap-
ter 7, or [39], Section 1.

There is a basic open question about Besicovitch sets which can be stated vaguely as
“How small can this really be?” This can be formulated more precisely in terms of fractal
dimension. If one uses the Hausdorff dimension, then the main question is the following.

Open question (the Kakeya conjecture) If E ⊂ Rn is a Kakeya set, does E necessarily
have Hausdorff dimension n?

If n = 2 then the answer is yes; this was proved by Davies [8] in 1971. For general n,
what is known at present is that dim(E) ≥ min(n+2

2
, (2−

√
2)(n−4) + 3); the first bound

which is better for n = 3 is due to myself [38], and the second one is due to Katz and
Tao [19]. Instead of the Hausdorff dimension one can use other notions of dimension, for
example the Minkowski dimension defined in Section 8. The current best results for the
upper Minkowski dimension are due to Katz,  Laba and Tao [18], [22], [19].

There is also a more quantitative formulation of the problem in terms of the Kakeya
maximal functions, which are defined as follows. For any δ > 0, e ∈ Sn−1 and a ∈ Rn, let

T δe (a) = {x ∈ Rn : |(x− a) · e| ≤ 1

2
, |(x− a)⊥| ≤ δ},

where x⊥ = x − (x · e)e. Thus T δe (a) is essentially the δ-neighborhood of the unit line
segment in the e direction centered at a. Then the Kakeya maximal function of f ∈
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L1
loc(R

n) is the function f ∗δ : Sn−1 → R defined by

f ∗δ (e) = sup
a∈Rn

1

|T δe (a)|

∫
T δe (a)

|f |. (136)

The issue is to prove a “δ−ε” estimate for f ∗δ , i.e. an estimate of the form

∀ε∃Cε : ‖f ∗δ ‖Lp(Sn−1) ≤ Cεδ
−ε‖f‖p (137)

for some p <∞.

Remarks 1. It is clear from the definition that

‖f ∗δ ‖∞ ≤ ‖f‖∞, (138)

‖f ∗δ ‖∞ ≤ δ−(n−1)‖f‖1. (139)

2. If n ≥ 2 and p <∞, there can be no bound of the form

‖f ∗δ ‖q ≤ C‖f‖p, (140)

with C independent of δ. This can be seen as follows. Consider a zero measure Kakeya
set E. Let Eδ be the δ-neighborhood of E, and let f = χEδ . Then f ∗δ (e) = 1 for all
e ∈ Sn−1, so that ‖f ∗δ ‖q ≈ 1. On the other hand, limδ→0 |Eδ| = 0, hence limδ→0 ‖fδ‖p = 0
for any p <∞.

3. Let f = χD(0,δ). Then for all e ∈ Sn−1 the tube T δe (0) contains D(0, δ), so that

f ∗δ (e) = |D(0,δ)|
|T δe (0)| & δ. Hence ‖f ∗δ ‖p ≈ δ. However, ‖f‖p ≈ δn/p. This shows that (137)

cannot hold for any p < n.

Open problem (the Kakeya maximal function conjecture): prove that (137) holds with
p = n, i.e.

∀ε ∃Cε : ‖f ∗δ ‖Ln(Sn−1) ≤ Cεδ
−ε‖f‖n. (141)

When n = 2, this was proved by Córdoba [7] in a somewhat different formulation
and by Bourgain [3] as stated. These results are relatively easy; from one point of view,
this is because (141) is then an L2 estimate. In higher dimensions the problem remains
open. There are partial results on (141) which can be understood as follows. Interpolat-
ing between (139), which is the best possible bound on L1, and (141) gives a family of
conjectured inequalities

‖f ∗δ ‖q . Cεδ
−n
p

+1−ε‖f‖p, q = q(p). (142)

Note that if (142) holds for some p0 > 1, it also holds for all 1 ≤ p ≤ p0 (again by
interpolating with (135)). The current best results in this direction are that (142) holds
with p = min((n+ 2)/2, (4n+ 3)/7) and a suitable q [38], [19].
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Proposition 10.2 If (137) holds for some p < ∞, then Besicovitch sets in Rn have
Hausdorff dimension n.

Remark The inequality
|Eδ| ≥ C−1

ε δε (143)

for any Kakeya set E follows immediately from (137) by the same argument that showed
(140). (143) says that Besicovitch sets in Rn have lower Minkowski dimension n.

Proof of the proposition Let E be a Besicovitch set. Fix a covering of E by discs
Dj = D(xj, rj); we can assume that all rj ’s are ≤ 1/100. Let

Jk = {j : 2−k ≤ rj ≤ 2−(k−1)}.

For every e ∈ Sn−1, E contains a unit line segment Ie parallel to e. Let

Sk = {e ∈ Sn−1 : |Ie ∩
⋃
j∈Jk

Dj | ≥
1

100k2
}.

Since
∑

k
1

100k2 < 1 and
∑

k |Ie ∩
⋃
j∈Jk Dj| ≥ |Ie| = 1, it follows that

⋃∞
k=1 Sk = Sn−1.

Let
f = χFk , Fk =

⋃
j∈Jk

D(xj , 10rj).

Then for e ∈ Sk we have

|T 2−k
e (ae) ∩ Fk| &

1

100k2
|T 2−k
e (ae)|,

where ae is the midpoint of Ie so that T 2−k
e (ae) is a tube of radius 2−k around Ie. Hence

‖f ∗2−k‖p & k−2σ(Sk)
1/p. (144)

On the other hand, (137) implies that

‖f ∗2−k‖p ≤ Cε2
kε‖f‖p ≤ Cε2

kε(|Jk| · 2−(k−1)np)1/p. (145)

Comparing (144) and (145), we see that

σ(Sk) . 2kpε−knk2p|Jk| . 2−k(n−2pε)|Jk|.

Therefore ∑
j

rn−2pε
j ≥

∑
k

2−k(n−2pε)|Jk| &
∑
k

σ(Sk) & 1.

We have shown that
∑
rαj & 1 for any α < n, which implies the claimed Hausdorff

dimension bound. 2
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Remark By the same argument as in the proof of Proposition 10.2, (142) implies that
the dimension of a Kakeya set in Rn is at least p.

A. The n = 2 case

Theorem 10.3 If n = 2, then there is a bound

‖f ∗δ ‖2 ≤ C(log
1

δ
)1/2‖f‖2.

We give two different proofs of the theorem. The first one is due to Bourgain [3] and
uses Fourier analysis. The second one is due to Córdoba [7] and is based on geometric
arguments.

Proof 1 (Bourgain) We can assume that f is nonnegative. Let ρeδ(x) = (2δ)−1χT δe (0),
then

f ∗δ (e) = sup
a∈R2

(ρeδ ∗ f)(a).

Let ψ be a nonnegative Schwartz function on R such that φ̂ has compact support and
φ(x) ≥ 1 when |x| ≤ 1. Define ψ : R2 → R by

ψ(x) = φ(x1)δ−1φ(δ−1x2).

Note that ψ ≥ ρeδ when e = e1, so that f ∗δ (e1) ≤ supa(ψ ∗ f)(a). Similarly

f ∗δ (e) ≤ sup
a

(ψe ∗ f)(a),

where ψe = ψ ◦ pe for an appropriate rotation pe. Hence

f ∗δ (e) ≤ ‖ψe ∗ f‖∞ ≤ ‖ψ̂ef̂‖1 =

∫
|ψ̂e(ξ)| · |f̂(ξ)|dξ. (146)

By Hölder’s inequality,∫
|ψ̂e(ξ))| |f̂(ξ)|dξ

≤
( ∫
|ψ̂e(ξ)| |f̂(ξ)|2(1 + |ξ|)dξ

)1/2( ∫ |cψe(ξ)|
1+|ξ| dξ

)1/2

.
(147)

Note that ψ̂e = ψ̂ ◦ pe and ψ̂ = φ̂(x1)φ̂(δx2), so that |ψ̂e| . 1 and ψ̂ is supported on a
rectangle Re of size about 1× 1/δ. Accordingly,∫ |ψ̂e(ξ)|

1 + |ξ|dξ .
∫
Re

dξ

1 + |ξ| ≈
∫ 1/δ

1

ds

s
= log(

1

δ
). (148)
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Using (146), (147) and (148) we obtain

‖f ∗δ ‖2
2 . log(1

δ
)
∫
|ψ̂e(ξ)| |f̂(ξ)|2(1 + |ξ|)dξ

)1/2

. log(1
δ
)
∫
R2 |f̂(ξ)|2(1 + |ξ|)

(∫
S1 |ψ̂e(ξ)|de

)
dξ

. log 1
δ

∫
R2 |f̂(ξ)|2dξ

= log 1
δ
‖f‖2

2.

Here the third line follows since for fixed ξ the set of e ∈ Sn−1 where ψ̂e(ξ) 6= 0 has
measure . 1/(1 + |ξ|). The proof is complete. 2

Remark For n ≥ 3, the same argument shows that

‖f ∗δ ‖2 . δ−(n−2)/2‖f‖2, (149)

which is the best possible L2 bound.

Proof 2 (Córdoba) The proof uses the following duality argument.

Lemma 10.4 Let 1 < p <∞, and let p′ be the dual exponent of p: 1
p

+ 1
p′ = 1. Suppose

that p has the following property: if {ek} ⊂ Sn−1 is a maximal δ-separated set, and if

δn−1
∑

k y
p′

k ≤ 1, then for any choice of points ak ∈ Rn we have

‖
∑
k

ykχT δek (ak)‖p′ ≤ A.

Then there is a bound
‖f ∗δ ‖Lp(Sn−1) . A‖f‖p.

Proof. Let {ek} be a maximal δ-separated subset of Sn−1. Observe that if |e− e′| < δ
then f ∗δ (e) ≤ Cf ∗δ (e′); this is because any T δe (a) can be covered by a bounded number of
tubes T δe′(a

′). Therefore

‖f ∗δ ‖pp ≤
∑

k

∫
D(ek,δ)

|f ∗δ (e)|pde

. (δn−1
∑

k |f ∗δ (ek)|p)1/p

= δn−1
∑

k yk|f ∗δ (ek)|

for some sequence yk with
∑

k y
p′

k δ
n−1 = 1. On the last line we used the duality between

lp and lp′. Hence

‖f ∗δ ‖pp . δn−1
∑
k

yk
1

|T δek(ak)|

∫
T δek

(ak)

|f |
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for some choice of {ak}. Since |T δek(ak)| ≈ δn−1, it follows that

‖f ∗δ ‖pp .
∫ (∑

k

ykχT δek (ak)

)
|f |

≤ ‖
∑
k

ykχT δek (ak)‖p′ · ‖f‖p (Hölder’s inequality)

≤ A‖f‖p

as claimed. 2

We continue with Córdoba’s proof. In view of Lemma 10.4, it suffices to prove that
for any sequence {yk} with δ

∑
y2
k = 1 and any maximal δ-separated subset {ek} of S1

we have ∥∥∥∑
k

ykχT δek (ak)

∥∥∥
2
.
√

log
1

δ
. (150)

The relevant geometric fact is

|T δek(a) ∩ T δel(b)| .
δ2

|ek − el|+ δ
. (151)

Using (151) we estimate

‖
∑
k

ykχT δek (ak)‖2
2 =

∑
k,l

ykyl|T δek(ak) ∩ T
δ
el

(al)|

.
∑
k,l

ykyl
δ2

|ek − el|+ δ
.

.
∑
k,l

√
δyk
√
δyl

δ

|ek − el|+ δ
.

(152)

Observe that for fixed k∑
l

δ

|el − ek|+ δ
.
∑
l≤ 1

δ

δ

lδ + δ
=
∑
l≤ 1

δ

1

l + 1
≈ log

1

δ
,

and similarly for fixed l ∑
k

δ

|ek − el|+ δ
. log

1

δ
.

Applying Schur’s test (Lemma 7.5) to the kernel δ/(|ek − el|+ δ) we obtain that

‖
∑
k

ykχT δek (ak)‖2
2 . log

1

δ

∑
k

(
√
δyk)

2 . log
1

δ
, (153)
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which proves (150). 2

B. Kakeya Problem vs. Restriction Problem

Recall that the restriction conjecture states that

‖f̂dσ‖p ≤ Cp‖f‖L∞(Sn−1) if p >
2n

n− 1
.

In fact, the stronger estimate

‖f̂dσ‖p ≤ Cp‖f‖Lp(Sn−1) if p >
2n

n− 1
(154)

can be proved to be formally equivalent, see e.g. [3].
It is known that the restriction conjecture implies the Kakeya conjecture. This is

due to Bourgain [3], although a related construction had appeared earlier in [2]; both
constructions are variants on the argument in [13].

Proposition 10.5. (Fefferman, Bourgain) If (154) is true then the conjectured bound

‖f ∗δ ‖n ≤ Cεδ
−ε‖f‖n

is also true.

Proof We will use Lemma 10.4. Accordingly, we choose a maximal δ-separated set
{ej} on Sn−1; observe that such a set has cardinality ≈ δ−(n−1). For each j pick a tube
T δej (aj), and let τj be the cylinder obtained by dilating T δej(aj) by a factor of δ−2 around

the origin. Thus τj has length δ−2, cross-section radius δ−1, and axis in the ej direction.
Also let

Sj = {e ∈ Sn−1 : 1− e.ej ≤ C−1δ2}.
Then Sj is a spherical cap of radius approximately C−1δ, centered at ej . We choose the
constant C large enough so that the Sj ’s are disjoint. Knapp’s construction (see chapter
7) gives a smooth function fj on Sn−1 such that fj is supported on Sj and

‖fj‖L∞(Sn−1) = 1,

|f̂jdσ| & δn−1 on τj .

We consider functions of the form

fω =
∑
j

ωjyjfj,
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where yj are nonnegative coefficients and ωj are independent random variables taking
values ±1 with equal probability. Since fj have disjoint supports, we have

‖fω‖qLq(Sn−1) =
∑
j

‖yjfj‖qLq(Sn−1)

≈
∑
j

yqjδ
n−1. (155)

On the other hand,

E(‖f̂ωdσ‖q
Lq(Rn

)
) =

∫
Rn
E(|f̂ωdσ(x)|q)dx

≈
∫
Rn

(
∑
j

y2
j |f̂ωdσ(x)|2)q/2dx (Khinchin’s inequality)

& δq(n−1)

∫
Rn
|
∑
j

y2
jχτj (x)|q/2dx. (156)

Assume now that (154) is true. Then for any q > 2n
n−1

it follows from (155) and (156)
that

δq(n−1)

∫
Rn
|
∑
j

y2
jχτj (x)|q/2dx .

∑
j

yqjδ
n−1.

Let zj = y2
j and p′ = q/2, then the above inequality is equivalent to the statement

if δn−1
∑
j

z
q/2
j ≤ 1, then ‖

∑
j

zjχτj‖q/2 . δ−2(n−1) (157)

for any p′ ≥ n
n−1

. We now rescale this by δ2 to obtain

if δn−1
∑
j

zp
′

j ≤ 1, then ‖
∑
j

zjχTj‖p′ . δ
2( n
p′−(n−1))

.

Observe that n
p′ − (n− 1)↘ 0 as p′ ↘ n

n−1
. Thus for any ε > 0 we have

if δn−1
∑
j

zp
′

j ≤ 1, then ‖
∑
j

zjχTj‖p′ . δ−ε (158)

if p′ is close enough to n
n−1

. By Lemma 10.4, this implies that for any ε > 0

‖f ∗δ ‖p . δ−ε‖f‖p

provided that p < n is close enough to n. Interpolating this with the trivial L∞ bound,
we conclude that

‖f ∗δ ‖n . δ−ε‖f‖n
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as claimed. 2

We proved that the restriction conjecture is stronger than the Kakeya conjecture.
Bourgain [3] partially reversed this and obtained a restriction theorem beyond Stein-
Tomas by using a Kakeya set estimate that is stronger than the L2 bound (153) used in
the proof of (149). It is not known whether (either version of) the Kakeya conjecture
implies the full restriction conjecture.

Theorem 10.6 (Bourgain [3]) Suppose that we have an estimate

‖
∑
j

χT δej (aj)‖q′ ≤ Cεδ
−(n

q
−1+ε) (159)

for any given ε > 0 and for some fixed q > 2. Then

‖f̂dσ‖p ≤ Cp‖f‖L∞(Sn−1) (160)

for some p < 2n+2
n−1

.

Remark The geometrical statement corresponding to (159) is that Kakeya sets in Rn
have dimension at least q.

We will sketch the proof only for n = 3. Recall that in R3 we have the estimates

‖f̂dσ‖4 . ‖f‖L2(S2) (161)

from the Stein-Tomas theorem, and

‖f̂dσ‖L2(D(0,R)) . R1/2‖f‖L2(S2) (162)

from Theorem 7.4 with α = n − 1 = 2. Interpolating (161) and (162) yields a family of
estimates

‖ ˆfdσ‖Lp(D(0,R)) . R
2
p
− 1

2‖f‖L2(S2) (163)

for 2 ≤ p ≤ 4. Below we sketch an argument showing that the exponent of R in (163)
can be lowered if the L2 norm on the right side is replaced by the L∞ norm.

Proposition 10.7 Let n = 3, 2 < p < 4, and assume that (159) holds for some q > 2.
Then

‖f̂dσ‖Lp(D(0,R)) . Rα(p)‖f‖L∞(Sn−1),

where α(p) < 2
p
− 1

2
.

This of course implies (160) for all p such that α(p) ≤ 0; in particular, there are p < 4
for which (160) holds.
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Heuristic proof of the proposition Assume that ‖f‖L∞(Sn−1) = 1, and let δ = R−1. We
cover S2 by spherical caps

Sj = {e ∈ S2 : 1− e.ej ≤ δ},

where {ej} is a maximal
√
δ-separated set on S2. Then

f =
∑
j

fj ,

where each fj is supported on Sj. Let G = ˆfdσ andGj = ˆfjdσ, so thatG =
∑

j Gj. By the

uncertainty principle |Gj| is roughly constant on cylinders of length R and diameter
√
R

pointing in the ej direction. To simplify the presentation, we now make the assumption10

that Gj is supported on only one such cylinder τj.
Next, we cover D(0, R) with disjoint cubes Q of side

√
R. For each Q we denote by

N(Q) the number of cylinders τj which intersect it. Note that G|Q =
∑

j Gj|Q, where we
sum only over those j’s for which τj intersects Q. Using this and (163), we can estimate
‖G‖Lp(Q) for 2 ≤ p ≤ 4:

‖G‖Lp(Q) .
√
R

2
p
− 1

2

∥∥∥ ∑
j:τj∩Q 6=∅

fj

∥∥∥
L2(S2)

.
√
R

2
p
− 1

2 (N(Q) · |Si|)1/2

≈ δ
3
4
− 1
pN(Q)1/2. (164)

Summing over Q, we obtain

‖G‖pLp(D(0,R)) . δ
3p
4
−1
∑
Q

N(Q)p/2

≈ δ
3p
4
p+ 1

2‖
∑
j

χτj‖
p/2
p/2.

(165)

On the last line we used that

‖
∑
j

χτj‖
p/2
p/2 =

∑
Q

N(Q)p/2 · |Q| = δ−3/2
∑
Q

N(Q)p/2.

We now let p = 2q′, where q′ is the exponent in (159), and assume that p is sufficiently
close to 4 (interpolate (159) with (149) if necessary). We have from (159)

‖
∑
j

χ
T
√
δ

ej
(aj )
‖q′ ≤ Cε

√
δ
−( 3

q
−1+ε)

.

10It is because of this assumption that our proof is merely heuristic. Of course the Fourier transform
of a compactly supported measure cannot be compactly supported; the rigorous proof uses the Schwartz
decay of Gj instead.
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Rescaling this inequality by δ−1 we obtain

‖
∑
j

χτj‖q′ .
√
δ
−( 3

q
−1+ε)

δ−3/q′ = δ−1− 3
p
−ε.

We combine this with (164) and conclude that

‖G‖pLp(Q) . δ
p
4
−1δ−ε,

i.e.,

‖ ˆfdσ‖Lp(D(0,R)) . δ
1
4
− 1
p
−ε = R

1
p
− 1

4
+ε,

which proves the proposition since 1
p
− 1

4
< 2

p
− 1

2
if p < 4. 2
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