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Abstract

The burgeoning field of genomics has revived interest in multiple testing proce-
dures by raising new methodological and computational challenges. For exam-
ple, microarray experiments generate large multiplicity problems in which thou-
sands of hypotheses are tested simultaneously. Westfall and Young (1993) propose
resampling-based p-value adjustment procedures which are highly relevant to mi-
croarray experiments. This article discusses different criteria for error control in
resampling-based multiple testing, including (a) the family wise error rate of West-
fall and Young (1993) and (b) the false discovery rate developed by Benjamini and
Hochberg (1995), both from a frequentist viewpoint; and (c) the positive false dis-
covery rate of Storey (2002a), which has a Bayesian motivation. We also introduce
our recently developed fast algorithm for implementing the minP adjustment to
control family-wise error rate. Adjusted p-values for different approaches are ap-
plied to gene expression data from two recently published microarray studies. The
properties of these procedures for multiple testing are compared.

Key Words: multiple testing, family-wise error rate, false discovery rate, ad-
justed p-value, fast algorithm, minP, microarray.
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1 Introduction

The burgeoning field of genomics has revived interest in multiple testing
procedures by raising new methodological and computational challenges.
For example, microarray experiments generate large multiplicity problems
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in which thousands of hypotheses are tested simultaneously. Although the
methods described in this paper are applicable in any multiple testing situ-
ation, particular emphasis is placed on the use of adjusted p-values for the
identification of differentially expressed genes in microarray experiments.

DNA microarrays are a new and promising biotechnology which allow
the monitoring of expression levels in cells for thousands of genes simultane-
ously. Microarrays are being applied increasingly in biological and medical
research to address a wide range of problems, such as the classification of
tumors or the study of host genomic responses to bacterial infections (Al-
izadeh et al. (2000); Alon et al. (1999); Boldrick et al. (2002); Golub et al.
(1999); Perou et al. (1999); Pollack et al. (1999); Ross et al. (2000)). An
important and common aim in microarray experiments is the identification
of differentially expressed genes, i.e. of genes whose expression levels are
associated with a response or covariate of interest. The covariates could
be either polytomous (e.g. treatment/control status, cell type, drug type)
or continuous (e.g. dose of a drug, time), and the responses could be, for
example, censored survival times or other clinical outcomes. There are two
issues in identifying differentially expressed genes: (a) from the biological
viewpoint, the interest is simply to decide which genes are differentially ex-
pressed, while (b) from a statistical perspective, we might wish to quantify
in some probabilistic manner the evidence concerning the possible differen-
tial expression of the genes.

Issue (a) can be addressed satisfactorily by ranking the genes using a
suitable univariate test statistic or the associated p-values. Then the bi-
ologist can examine the genes in the top positions to decide whether they
really are differentially expressed, using more accurate low-throughput ex-
periments such as northern blots or one of the quantitative PCR-based
techniques. The number of genes that can be investigated in this follow-up
phase depends on the background and the aims of the experiment, and
on the level of effort the investigator is willing to expend. However, some
biologists may want a quantitative assessment of the likely differential ex-
pression of each gene, so that they do not have to follow-up genes with
little prospect of being truly differentially expressed. To address this need,
we consider the statistical issue (b). It can be addressed through multiple
hypothesis testing, by carrying out a simultaneous test for each gene of
the null hypothesis of no association between the expression levels and the
responses or covariates. Since a typical microarray experiment measures
expression levels for several thousand genes simultaneously, we are faced
with an extreme multiple testing problem. In any such testing situation,
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two types of errors can occur: a false positive, or type I error, is committed
when a gene is declared to be differentially expressed when it is not, and
a false negative, or type II error, is committed when the test fails to iden-
tify a truly differentially expressed gene. Special problems arising from the
multiplicity aspect include defining an appropriate type I error rate, and
devising powerful multiple testing procedures which control this error rate
and incorporate the joint distribution of the test statistics.

Westfall and Young (1993) propose resampling-based p-value adjust-
ment procedures which are highly relevant to microarray experiments. In
particular, these authors define adjusted p-values for multiple testing pro-
cedures which control the family-wise error rate and take into account the
dependence structure between test statistics. However, due to the very
large number of hypotheses in current applications, computational issues
remain to be addressed. The present paper introduces a new algorithm
for computing the Westfall and Young (1993) step-down minP adjusted
p-values. A second line of multiple testing is developed by Benjamini and
Hochberg (1995). They propose procedures to control the false discovery
rate. This was further developed by Storey (2002a) with a new concept
called positive false discovery rate, which has a Bayesian motivation.

Section 2 reviews the basic notions of multiple testing and discusses
different criteria for controlling type I error rates. Section 3 presents proce-
dures based on adjusted p-values to control family-wise error rates. Section
4 presents resampling algorithms for estimating the adjusted p-values of
Section 3 and introduces a fast algorithm for computing the Westfall and
Young (1993) step-down minP adjusted p-values. Section 5 presents pro-
cedures based on FDR adjusted p-values and the pFDR-based q-values.
The multiple testing procedures of Sections 3, 4 and 5 are applied to gene
expression data from two recently published microarray studies described
in Section 6. The results from the studies are discussed in Section 7, and
finally, Section 8 summarizes our findings and outlines open questions.

2 Multiple testing and adjusted p-values

2.1 Multiple testing in microarray experiments

Suppose we have microarray experiments which produce expression data
on m genes (or variables) for n samples (corresponding to n individual
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microarray experiments). Let the gene expression levels be arrayed as an
m×n matrix X = (xij), with rows corresponding to genes and columns to
individual microarray experiments 1. In most cases, the additional data for
sample j consists of one or more responses or covariates yj . The gene ex-
pression levels xij might be either absolute (e.g. Affymetrix oligonucleotide
arrays (Lockhart et al., 1996)) or relative with respect to the expression lev-
els of a suitably defined common reference sample (e.g. two-color cDNA
microarrays (DeRisi et al., 1997)). The yj could be either polytomous or
continuous. In the simplest case, the n samples would consist of n1 control
samples and n2 treatment samples, in which case yj would be treatment
status (treatment or control). In the Apo AI experiment (Callow et al.
(2000)), m = 6,356, n1 = n2 = 8 so that n = n1 + n2 = 16. This dataset
will be described in Section 6.1. Let Xi denote the random variable corre-
sponding to the expression level for gene i and let Y denote the response
or covariate. If a single test is considered for each gene (variable), the null
hypothesis for testing that the gene is not differentially expressed between
the treatment and the control can be stated as:

Hi : There is no association between Xi and Y .

If each Hi is tested separately, then nothing more than univariate hypoth-
esis testing is needed. This kind of testing has been studied extensively
in the statistical literature. In general, the appropriate test statistic for
each gene will depend on the experimental design, the type of response or
covariate and the alternative hypothesis in mind. For example, for binary
covariates one might consider t- or Mann-Whitney statistics, for polyto-
mous covariates one might use an F -statistic, and for survival data one
might rely on the score statistic for the Cox proportional hazard model.
We will not discuss the choice of statistic any further here, except to say
that for each gene i the null hypothesis Hi will be tested using a statistic
Ti, and ti will denote a realization of the random variable Ti. To simplify
matters, we further assume that the null Hi is rejected for large values of
|Ti|, i.e. this will be a two-sided test. Our two examples both involve two-
sample t-statistics, but the extensions to other statistics should be clear.

When testing Hi, i = 1, . . . ,m simultaneously, we want to reject hy-
1Note that this gene expression data matrix is the transpose of the standard n ×m

design matrix. The m × n representation was adopted in the microarray literature for
display purposes, since for very large m and small n it is easier to display an m × n
matrix than an n×m matrix.
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index 2271 5709 5622 4521 3156 5898 2164 5930 2427 5694

t-stat 4.93 4.82 -4.62 4.34 -4.31 -4.29 -3.98 3.91 -3.90 -3.88

p-value 0.0002 0.0003 0.0004 0.0007 0.0007 0.0007 0.0014 0.0016 0.0016 0.0017

Table 1: The simulated results for 6000 independent not differentially expressed

genes.

potheses while controlling a suitably defined type I error rate (Dudoit et al.
(2002b); Efron et al. (2000, 2001); Golub et al. (1999); Kerr et al. (2000);
Manduchi et al. (2000); Tusher et al. (2001); Westfall et al. (2001)). Multi-
ple testing is the subject of the present paper. Although this is by no means
a new subject in the statistical literature, microarray experiments are a new
and challenging area of application for multiple testing procedures because
of the sheer number of comparisons involved.

Before moving on to the multiple testing problem, we summarize the re-
sults of a simple simulation based on the microarray experiments in Callow
et al. (2000). Suppose that the elements of the array xij are independently
and identically distributed N(0, 1), i = 1, . . . , 6000, j = 1, . . . , 16. Regard
the first 8 columns of this array as corresponding to treatment units and the
second 8 columns as corresponding to control units, just as in Callow et al.
(2000). Table 1 lists the 10 genes with the largest two-sample t-statistics
in absolute values. This table has three rows, the first giving the gene in-
dices, ranging from 1 to 6000, the second giving the two-sample t-statistics,
while the last row has the raw (i.e. unadjusted) p-values computed by the
resampling algorithm described in Section 4. This table suggests that we
cannot use the conventional 0.05 or 0.01 thresholds for p-values to find sig-
nificantly differentially expressed genes, since by our simulation, the data
have no genes differentially expressed between the treatment and control.
Indeed, if the 0.05 threshold is used, about 6000× 0.05 = 300 genes would
be found differentially expressed, which would be quite misleading. We
conclude that when testing thousands of genes, the use of conventional
thresholds for p-values is inappropriate. The framework of multiple testing
seeks to give guidance concerning what might be appropriate in such situ-
ations. In the remainder of this section, we review the basic notions and
approaches to multiple testing.
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# not rejected # rejected

# true null hypotheses U V m0

# non-true null hypotheses T S m1

W R m

Table 2: Summary table for the multiple testing problem, based on Table 1 of

Benjamini and Hochberg (1995).

2.2 Type I error rates

Set-up. Consider the problem of simultaneously testing m null hypotheses
Hi, i = 1, . . . , m. Let Hi = 0 when the null hypothesis Hi is true, and Hi =
1 otherwise. In the frequentist setting, the situation can be summarized
by Table 2, based on Table 1 of Benjamini and Hochberg (1995). The
m specific hypotheses are assumed to be known in advance, and the sets
M0 = {i : Hi = 0} and M1 = {i : Hi = 1} of true and false null hypotheses
are unknown parameters, m0 = |M0|, m1 = |M1|. Note the complete
set as M = {1, 2, · · · ,m} = M0 ∪ M1. The number R of rejected null
hypotheses and W = m − R are observable random variables, while S, T ,
U , and V in the table are unobservable random variables. In the microarray
context, there is a null hypothesis Hi for each gene i and rejection of Hi

corresponds to declaring that gene i is differentially expressed, in some
suitable sense. In general, we would like to minimize the number V of false
positives, or type I errors, and the number T of false negatives, or type II
errors. The standard approach is to prespecify an acceptable type I error
rate α and seek tests which minimize the type II error rate, i.e., maximize
power, within the class of tests with type I error rate α.

Type I error rates. When testing a single hypothesis, H, say, the proba-
bility of a type I error, i.e., of rejecting the null hypothesis when it is true,
is usually controlled at some designated level α. This can be achieved by
choosing a critical value cα such that Pr(|T | > cα | H = 0) ≤ α and reject-
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ing H when |T | > cα. A variety of generalizations of type I error rates to
the multiple testing situation are possible.

• Per-comparison error rate (PCER). The PCER is defined as the ex-
pected value of (number of type I errors/number of hypotheses), i.e.,

PCER = E(V )/m.

• Per-family error rate (PFER). Not really a rate, the PFER is defined
as the expected number of type I errors, i.e.,

PFER = E(V ).

• Family-wise error rate (FWER). The FWER is defined as the prob-
ability of at least one type I error, i.e.,

FWER = Pr(V > 0).

• False discovery rate (FDR). The most natural way to define FDR
would be E(V/R), the expected proportion of type I errors among
the rejected hypotheses. However, different methods of handling the
case R = 0 lead to different definitions. Putting V/R = 0 when R = 0
gives the FDR definition of Benjamini and Hochberg (1995), i.e.,

FDR = E

[
V

R
1{R>0}

]
= E

[
V

R
| R > 0

]
Pr(R > 0).

When m = m0, it is easy to see that FDR = FWER.

• Positive false discovery rate (pFDR). If we are only interested in es-
timating an error rate when positive findings have occurred, then the
pFDR of Storey (2002a) is appropriate. It is defined as the conditional
expectation of the proportion of type I errors among the rejected hy-
potheses, given that at least one hypothesis is rejected,

pFDR = E

[
V

R
| R > 0

]
.

Storey (2002a) shows that this definition is intuitively pleasing and
has a nice Bayesian interpretation (cf. the remarks on page 11) below.
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Comparison of type I error rates. Given the same multiple testing
procedure, i.e. the same rejection region in the m-dimensional space of
(T1, T2, . . . , Tm), it is easy to prove that

PCER ≤ FDR ≤ FWER ≤ PFER,

FDR ≤ pFDR.

First, note that 0 ≤ V ≤ R ≤ m and that R = 0 implies V = 0, whence

V

m
≤ V

R
1{R>0} ≤ 1{V >0} ≤ V.

Taking expectations of the above proves these assertions. It is more dif-
ficult to describe the relations between pFDR and FWER. In microarray
applications, we expect pFDR ≤ FWER, apart from the extreme case when
1 = pFDR ≥ FDR = FWER when m0 = m. This is unlikely to be the case
with microarray experiments as it is generally expected that at least one
gene will be differentially expressed. Also Pr(R > 0) → 1 as m → ∞, in
which case pFDR is identical to FDR. Therefore we expect the following
inequality to hold generally,

PCER ≤ FDR ≤ pFDR ≤ FWER ≤ PFER. (2.1)

Exact control, weak control and strong control. It is important
to note that the expectations and probabilities above are conditional on
the true hypothesis HM0 =

⋂
i∈M0

{Hi = 0}. Controlling an error rate in
this case will be called exact control. For the FWER, exact control means
control of Pr(V > 0 | HM0). Since the set M0 is unknown, in general,
we turn to computing the error rate when all null hypotheses are true,
i.e., under the complete null hypothesis HM = ∩m

i=1{Hi = 0}, equivalently,
when m0 = m or M0 = M. Controlling an error rate under HM is called
weak control. For the FWER, weak control means control of Pr(V > 0 |
HM). Strong control means control for every possible choice M0. For the
FWER, it means control of maxM0⊆{1,...,m} Pr(V > 0 | HM0). In general,
strong control implies exact control and weak control, but neither of weak
control and exact control implies the other. In the microarray setting,
where it is very unlikely that none of the genes is differentially expressed,
it seems that weak control without any other safeguards is unsatisfactory,
and that it is important to have exact or strong control of type I error rates.
The advantage of exact control is higher power.
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2.3 Adjusted p-values and q-values

Raw p-values. Consider first the test of a single hypothesis H with nested
level α rejection regions Γα such that (a) Γα1 ⊆ Γα2 , for 0 ≤ α1 ≤ α2 ≤ 1,
and (b) Pr(T ∈ Γα | H = 0) ≤ α, for 0 ≤ α ≤ 1. If we are interested in
using the statistic |T | to carry out a two-sided test, the nested rejection
regions Γα = [−∞,−cα] ∪ [cα,∞] are such that Pr(T ∈ Γα | H = 0) = α.
The p-value for the observed value T = t is

p-value(t) = min
{Γα: t∈Γα}

Pr(T ∈ Γα | H = 0). (2.2)

In words, the p-value is the minimum type I error rate over all possible
rejection regions Γα containing the observed value T = t. For a two sided
test, p-value(t) = Pr(|T | ≥ |t| | H = 0) = p, say. The smaller the p-value p,
the stronger the evidence against the null hypothesis H. Rejecting H when
p ≤ α provides control of the type I error rate at level α. The p-value can
also be thought of as the level of the test at which the hypothesis H would
just be rejected. Extending this concept to the multiple testing situation
leads to the very useful definition of adjusted p-value. In what follows we
will call the traditional (unadjusted) p-value associated with a univariate
test a raw p-value.

Adjusted p-values. Let ti and pi = Pr(|Ti| ≥ |ti| | Hi = 0) denote
respectively the test statistic and p-value for hypothesis Hi (gene i), i =
1, . . . , m. Just as in the single hypothesis case, a multiple testing procedure
may be defined in terms of critical values for the test statistics or the p-
values of individual hypotheses: e.g. reject Hi if |ti| > ci or if pi ≤ αi, where
the critical values ci or αi are chosen to control a given type I error rate
(FWER, PCER, PFER, or FDR) at a prespecified level α. Alternately, the
multiple testing procedure may be defined in terms of adjusted p-values.
Given any test procedure, the adjusted p-value corresponding to the test
of a single hypothesis Hi can be defined as the level of the entire test
procedure at which Hi would just be rejected, given the values of all test
statistics involved (Shaffer (1995); Westfall and Young (1993); Yekutieli
and Benjamini (1999)). If interest is in controlling the FWER, the FWER
adjusted p-value for hypothesis Hi is:

p̃i = inf {α : Hi is rejected at FWER = α} .
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Hypothesis Hi is then rejected, i.e., gene i is declared differentially
expressed, at FWER α if p̃i ≤ α. Note that this definition is dependent on
the rejection procedure used. If that procedure is very conservative, such
as the classical Bonferroni procedure, then the corresponding adjusted p-
values will also be very conservative. For the stepwise procedures to be
discussed in Section 3 and Section 5.1, the adjusted p-value for gene i
depends on not only the magnitude of the statistic Ti, but also on the rank
of gene i among all the genes. Adjusted p-values for other type I error rates
are defined similarly (Yekutieli and Benjamini (1999)), e.g.

p̃i = inf {α : Hi is rejected at FDR = α} .

As in the single hypothesis case, an advantage of reporting adjusted p-
values, as opposed to only rejection or not of the hypotheses, is that the
level of the test does not need to be determined in advance. Some multiple
testing procedures are most conveniently described in terms of their ad-
justed p-values, and for many these can in turn be determined easily using
resampling methods.

q-values. The positive false discovery rate pFDR cannot be strongly
controlled in the traditional sense as pFDR = E(V/R | R > 0) = 1 when
m0 = m. However, an analogue of adjusted p-value termed the q-value
can be defined in this context, although we emphasize that Storey (2001)
does not view it as a form of adjusted p-value. The notion of q-value is ap-
proached by recalling the definition of p-value in equation (2.2), considering
the minimum of the type I error rates for all possible rejection regions Γα

containing the observed T = t. Let pFDR(Γα) be the pFDR when each hy-
pothesis is rejected by the same rejection region Γα. The q-value is defined
analogously, namely

q-value(t) = inf
{Γα: t∈Γα}

pFDR(Γα). (2.3)

Note that the above definition requires the Ti to be identically distributed
across genes. Alternatively, if observed p-values are used to reject the test,
then the nested rejection region Γγ = [0, γ], abbreviated by γ leads to

q-value(p) = inf
{γ≥p}

pFDR(γ). (2.4)

Remark 2.1. Firstly, no procedures can give strong or weak control for
pFDR, as pFDR=1 when m0 = m. However, m0 = m is extremely unlikely
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with microarray data, and pFDR can be conservatively estimated under the
unknown true hypothesis HM0 . One such method doing so will be given in
Section 5.2. The use of q-value(p) provides a way to adjust p-values under
HM0 which leads to control of pFDR.

Secondly, Storey (2001) argues that a q-value is not a “pFDR adjusted p-
value”. This is because adjusted p-values are defined in terms of a particular
procedure, i.e. a sequential p-value method, such as those to be discussed
in Section 3 and Section 5.1, while pFDR can not be controlled by such
procedure. Our view is that q-value(p) gives us the minimum pFDR that
we can achieve when rejecting Hj whenever pj ≤ p, j = 1, . . . ,m. Therefore
q-values are analogous to the single step adjustments for controlling FWER
to be discussed in Section 3.1. Indeed, the notion of q-value is similar to
the concept of “p-value correction” in Yekutieli and Benjamini (1999). The
only difference between q-values and single step adjusted p-values is that q-
values consider only the true but unknown M0 (exact control), while single
step adjustments consider every possible choice of M0,M0 ⊆ {1, 2, . . . ,m}
(strong control). In what follows, we will use the terms q-value and adjusted
p-value interchangeably for pFDR.

The q-value definition has an appealing Bayesian interpretation. Sup-
pose that the Ti | Hi are independently distributed as (1−Hi) ·F0 +Hi ·F1

for some null distribution F0 and alternative distribution F1, and that
the Hi are independently and identically distributed Bernoulli(π1), where
π1 = 1 − π0, π0 being the a priori probability that a hypothesis is true.
Theorem 1 of Storey (2001) states that for all i

pFDR(Γα) = Pr(Hi = 0 | Ti ∈ Γα). (2.5)

Since the left-hand side does not depend on i, we drop it from the right
hand side. Using the definition of q-value,

q-value(t) = inf
{Γα: t∈Γα}

Pr(H = 0 | T ∈ Γα).

Comparing this formula to the one for p-value(t) given in equation (2.2),
it can be seen that the difference between a p-value and a q-value is that
the role of H = 0 and T ∈ Γα have been switched. The q-values are
thus Bayesian version of p-values, analogous to the “Bayesian posterior p-
values” of Morton (1955). Details of a Bayesian interpretation can be found
in Storey (2001).
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3 Procedures controlling the family-wise error rate

There are three distinct classes of multiple testing procedures commonly
used in the literature: single-step, step-down and step-up procedures. In
single-step procedures, equivalent multiplicity adjustments are performed
for all hypotheses, regardless of the ordering of the test statistics or raw p-
values. Improvements in power, while preserving type I error rate control,
may be achieved by stepwise procedures, in which rejection of a particular
hypothesis is based not only on the total number of hypotheses, but also on
the outcome of the tests of other hypotheses. Step-down procedures order
the raw p-values (or test statistics) starting with the most significant, while
step-up procedures start with the least significant.

3.1 Single-step procedures

For strong control of the FWER at level α, the Bonferroni procedure, per-
haps the best known in multiple testing, rejects any hypothesis Hi with
p-value less than or equal to α/m. The corresponding Bonferroni single-
step adjusted p-values are thus given by

p̃i = min
(
mpi, 1

)
. (3.1)

Control of the FWER in the strong sense follows from Boole’s inequal-
ity, where the probabilities in what follows are conditional on HM0 =⋂

i∈M0
{Hi = 0}.

FWER = Pr(V > 0) ≤ Pr

[
m0⋃

i=1

{P̃i ≤ α}
]
≤

m0∑

i=1

Pr
(
P̃i ≤ α

)

≤
m0∑

i=1

α/m = m0α/m ≤ α. (3.2)

Bonferroni-adjusted p-values are not, strictly, adjusted p-values in the sense
of the definition given earlier. Rather, they are conservative lower bounds to
adjusted p-values which are difficult if not impossible to calculate without
further assumptions. Closely related to the Bonferroni procedure is the
Šidák procedure which is exact for protecting the FWER when the raw p-
values are independently and uniformly distributed over [0, 1]. By a simple
computation, the Šidák single-step adjusted p-values are given by

p̃i = 1− (1− pi)m. (3.3)
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We sketch the easy proof that this procedure provides strong control.
Note that

Pr(V = 0) = Pr(
m0⋂

i=1

{P̃i ≥ α}) =
m0∏

i=1

Pr(P̃i ≥ α)

=
m0∏

i=1

Pr(Pi ≥ 1− (1− α)1/m) = {(1− α)1/m}m0 . (3.4)

Therefore,

FWER = Pr(V > 0) = 1− Pr(V = 0) = 1− (1− α)m0/m ≤ α. (3.5)

In many situations, the test statistics and hence the p-values are corre-
lated. This is the case in microarray experiments, where groups of genes
tend to have highly correlated expression levels due to co-regulation. West-
fall and Young (1993) propose adjusted p-values for less conservative mul-
tiple testing procedures which take into account the dependence structure
between test statistics. Their single-step minP adjusted p-values are defined
by

p̃i = Pr
(

min
1≤l≤m

Pl ≤ pi | HM

)
, (3.6)

where HM denotes the complete null hypothesis and Pl the random variable
for the raw p-value of the lth hypothesis. Alternately, we may consider pro-
cedures based on the single-step maxT adjusted p-values which are defined
in terms of the test statistics Ti themselves, namely

p̃i = Pr
(

max
1≤l≤m

|Tl| ≥ |ti| | HM

)
. (3.7)

The following points should be noted regarding these four procedures.

1. If the raw p-values P1, . . . , Pm are independent, the minP adjusted
p-values are the same as the Šidák adjusted p-values.

2. The Šidák procedure does not guarantee control of the FWER for
arbitrary distributions of the test statistics, but it does control the
FWER for test statistics that satisfy an inequality known as Šidák’s
inequality: Pr(|T1| ≤ c1, . . . , |Tm| ≤ cm) ≥ ∏m

i=1 Pr(|Ti| ≤ ci). This
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inequality was initially derived by Dunn (1958) for (T1, . . . , Tm) hav-
ing a multivariate normal distribution with mean zero and certain
types of covariance matrix. Šidák (1967) extended the result to arbi-
trary covariance matrices, and Jogdeo (1977) showed that the inequal-
ity holds for a larger class of distributions, including the multivariate
t- and F -distributions. When the Šidák inequality holds, the minP
adjusted p-values are less than the Šidák adjusted p-values.

3. Computing the quantities in equation (3.6) under the assumption that
Pl ∼ U [0, 1] and using the upper bound provided by Boole’s inequality
yields the Bonferroni p-values. In other words, procedures based on
minP adjusted p-values are less conservative than the Bonferroni or
Šidák (under the Šidák inequality) procedures. Again, in the case
of independent test statistics, the Šidák and minP adjustments are
equivalent.

4. Procedures based on the maxT and minP adjusted p-values control
the FWER weakly under all conditions. Strong control of the FWER
also holds under the assumption of subset pivotality (Westfall and
Young, 1993, p. 42). The distribution of raw p-values (P1, . . . , Pm)
is said to have the subset pivotality property if for all subsets K of
{1, . . . , m} the joint distributions of the sub-vector {Pi : i ∈ K} are
identical under the restrictions HK = ∩i∈K{Hi = 0} and HM =
∩m

i=1{Hi = 0}. This property is required to ensure that procedure
based on adjusted p-values computed under the complete null pro-
vide strong control of the FWER. A practical consequence of it is
that resampling for computing adjusted p-values may be done un-
der the complete null HM rather than the unknown partial null hy-
potheses HM0 . For the problem of identifying differentially expressed
considered in this article, the subset pivotality property is usually sat-
isfied. Here is the proof. Let Ti be the statistic for gene i, e.g. the
two-sample t-statistic or one of the other statistics defined in Sec-
tion 8. For any subset K = {i1, i2, · · · , ik}, let its complement set be
{j1, j2, · · · , jm−k}. Since Ti is computed only from the data on gene
i (the i-th row of the data matrix X), and not from any data from
other genes, the joint distribution of (Ti1 , Ti2 , · · · , Tik) is not going
to depend on (Hj1 ,Hj2 , · · · ,Hjm−k

) given the same specification of
(Hi1 ,Hi2 , · · · ,Hik). This proves subset pivotality.

5. The maxT p-values are easier to compute than the minP p-values, and
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are equal to the minP p-values when the test statistics Ti are iden-
tically distributed. However, the two procedures generally produce
different adjusted p-values, and considerations of balance, power, and
computational feasibility should dictate the choice between the two
approaches. When the test statistics Ti are not identically distributed
(e.g. t-statistics with different degrees of freedom), not all tests con-
tribute equally to the maxT adjusted p-values and this can lead to
unbalanced adjustments (Beran 1988, Westfall and Young 1993, p.
50). When adjusted p-values are estimated by permutation (Section
4) and a large number of hypotheses are tested, procedures based
on the minP p-values tend to be more sensitive to the number of
permutations and more conservative than those based on the maxT
p-values. Also, the minP p-values require more computation than the
maxT p-values, because the raw p-values must be computed before
considering the distribution of their successive minima.

3.2 Step-down procedures

While single-step procedures are simple to implement, they tend to be con-
servative for control of the FWER. Improvement in power, while preserving
strong control of the FWER, may be achieved by step-down procedures. Be-
low are the step-down analogues, in terms of their adjusted p-values, of the
four procedures described in the previous section. Let pr1 ≤ pr2 ≤ ... ≤ prm

denote the ordered raw p-values. For control of the FWER at level α, the
Holm (1979) procedure proceeds as follows. Starting from i = 1, then
i = 2, until i = m, let i∗ be the first integer i such that pri > α

m−i+1 . If
no such i∗ exists, reject all hypotheses; otherwise, reject hypotheses Hri for
i = 1, . . . , i∗ − 1. The Holm step-down adjusted p-values are thus given by

p̃ri = max
k=1,...,i

{
min

(
(m− k + 1) prk

, 1
)}

. (3.8)

Holm’s procedure is less conservative than the standard Bonferroni pro-
cedure, which would multiply the p-values by m at each step. Note that
taking successive maxima of the quantities min

(
(m− k +1) prk

, 1
)

enforces
monotonicity of the adjusted p-values. That is, p̃r1 ≤ p̃r2 ≤ ... ≤ p̃rm ,
and one can only reject a particular hypothesis provided all hypotheses
with smaller raw p-values were rejected beforehand. Similarly, the Šidák
step-down adjusted p-values are defined as
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p̃ri = max
k=1,...,i

{
1− (1− prk

)(m−k+1)
}

. (3.9)

The Westfall and Young (1993) step-down minP adjusted p-values are
defined by

p̃ri = max
k=1,...,i

{
Pr

(
min

l=k,...,m
Prl

≤ prk
| HM

)}
, (3.10)

and the step-down maxT adjusted p-values are defined by

p̃si = max
k=1,...,i

{
Pr

(
max

l=k,...,m
|Tsl

| ≥ |tsk
| | HM

)}
, (3.11)

where |ts1 | ≥ |ts2 | ≥ ... ≥ |tsm | denote the ordered test statistics.

Note that computing the quantities in (3.10) under the assumption
that the Pi are uniformly distributed on the interval [0,1], and using the
upper bound provided by Boole’s inequality, we obtain Holm’s p-values.
Procedures based on the step-down minP adjusted p-values are thus less
conservative than Holm’s procedure. For a proof of strong control of the
FWER for the maxT and minP procedures assuming subset pivotality we
refer the reader to Westfall and Young (1993, Section 2.8).

4 Resampling algorithms to control FWER

In many situations, the joint (and marginal) distribution of the test statis-
tics is unknown. Bootstrap or permutation resampling can be used to
estimate raw and adjusted p-values while avoiding parametric assumptions
about the joint distribution of the test statistics. In the microarray set-
ting, the joint distribution under the complete null hypothesis of the test
statistics T1, . . . , Tm can be estimated by permuting the columns of the
gene expression data matrix X. Permuting entire columns of this matrix
creates a situation in which the response or covariate Y is independent of
the gene expression levels, while preserving the correlation structure and
distributional characteristics of the gene expression levels. Depending on
the sample size n it may be infeasible to consider all possible permutations,
in which case a random subset of B permutations (including the observed)
is considered. The manner in which the responses/covariates are permuted
depends on the experimental design. For example, with a two-factor de-
sign, one can permute the levels of the factor of interest within the levels of
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Box 1. Permutation algorithm for raw p-values
For the bth permutation, b = 1, . . . , B:

1. Permute the n columns of the data matrix X.

2. Compute test statistics t1,b, . . . , tm,b for each hypothesis.

After the B permutations are done, for two-sided alternative hypotheses,
the permutation p-value for hypothesis Hi is

p∗i =
#{b : |ti,b| ≥ |ti|}

B
for i = 1, . . . , m.

the other factor. Next, we present permutation algorithms for estimating
adjusted p-values.

4.1 Raw p-values

Box 1 describes how to compute raw p-values from permutations. Permu-
tation adjusted p-values for the Bonferroni, Šidák and Holm procedures
can then be obtained by replacing pi by p∗i in equations (3.1), (3.3), (3.8),
and (3.9).

4.2 Step-down maxT adjusted p-values

For the step-down maxT adjusted p-values of Westfall and Young (1993),
the null distribution of successive maxima maxl=i,...,m |Tsl

| of the test statis-
tics needs to be estimated. (The single-step case is simpler and omitted
here as we only need the distribution of the maxl=1,...,m |Tsl

|.) The details
of the algorithm are presented in Box 2.

4.3 The traditional double permutation algorithm for step-down
minP adjusted p-values

The single-step and step-down minP adjusted p-values of Westfall and
Young (1993) are in general harder to compute as they require the joint null
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Box 2. Permutation algorithm for step-down maxT adjusted
p-values - based on Westfall and Young (1993, Algorithm 4.1,
p. 116–117)
For the original data, order the observed test statistics such that |ts1 | ≥
|ts2 | ≥ ... ≥ |tsm |. For the bth permutation, b = 1, . . . , B:

1. Permute the n columns of the data matrix X.

2. Compute test statistics t1,b, . . . , tm,b for each hypothesis.

3. Next, compute ui,b = maxl=i,...,m |tsl,b| (see equation (3.11)), the
successive maxima of test statistics by

um,b = |tsm,b|
ui,b = max

(
ui+1,b, |tsi,b|

)
for i = m− 1, . . . , 1.

The above steps are repeated B times and the adjusted p-values are
estimated by

p̃∗si
=

#{b : ui,b ≥ |tsi |}
B

for i = 1, . . . , m

with the monotonicity constraints enforced by setting

p̃∗s1
← p̃∗s1

, p̃∗si
← max

(
p̃∗si−1

, p̃∗si

)
for i = 2, . . . , m.

distribution of P1, . . . , Pm. The traditional double permutation algorithm
for computing these p-values is described in Box 3.

When the raw p-values themselves are unknown, additional resampling
at step 2 for estimating these p-values can be computationally infeasible.
This algorithm is called a double permutation algorithm because of the two
rounds of resampling procedures. For a typical microarray experiment, such
as the one described in Section 6.1, all possible B = 12,870 permutations
are used to estimate raw and adjusted p-values for m = 6,356 genes. A
double permutation algorithm would require O(mB2 +m log m) ≈ O(1012)
computations (cf. Table 3 p. 24). As the time taken for generating one set
of raw p-values for all genes is about 2 minutes, our estimate of the compu-
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Box 3. The traditional double permutation algorithm for
step-down minP adjusted p-values - based on Westfall and
Young (1993, Algorithm 2.8, p. 66-67.)

For the original data, use the algorithm in Box 1 to compute the raw p-
values p∗1, . . . , p

∗
m and then order the raw p-values such that p∗r1

≤ p∗r2
≤

· · · ≤ p∗rm
.

For the bth permutation, b = 1, . . . , B:

1. Permute the n columns of the data matrix X.

2. Compute raw p-values p1,b, . . . , pm,b for each hypothesis from the
permuted data.

3. Next, compute qi,b = minl=i,...,m prl,b (see equation (3.10) ), the
successive minima of the raw p-values.

qm,b = prm,b

qi,b = min
(
qi+1,b, pri,b

)
for i = m− 1, . . . , 1.

The above steps are repeated B times and the adjusted p-values are
estimated by

p̃∗ri
=

#{b : qi,b ≤ p∗ri
}

B
for i = 1, . . . ,m.

with the monotonicity constraints enforced by setting

p̃∗r1
← p̃∗r1

, p̃∗ri
← max

(
p̃∗ri−1

, p̃∗ri

)
for i = 2, . . . ,m.

tation time for such an algorithm is approximately 400 hours (2×12,000/60)
on a Sun 200Mhz Ultrasparc workstation,

One way around the computational problem is to turn to procedures
based on maxT adjusted p-values, which may be estimated from a sin-
gle permutation using the algorithm in Box 2. However, as mentioned
in Section 2.3, if the test statistics are not identically distributed across
hypotheses, the maxT adjusted p-values may be different from the minP
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adjusted p-values, and may give different weights to different hypotheses.
For example, if the test statistic Ti for one particular hypothesis Hi has a
heavy-tailed distribution, it will tend to be larger than other test statis-
tics and hence Hi will tend to have smaller adjusted p-value than other
hypotheses. In such cases it will be better to compute minP rather than
maxT adjusted p-values. We now present a new resampling algorithm for
estimating minP adjusted p-values without the double resampling step of
Box 3. Note that this algorithm produces the same p-values as the double
permutation algorithm in Box 3.

4.4 A new algorithm for step-down minP adjusted p-values

This algorithm allows the minP adjusted p-values to be obtained within a
single permutation analysis. The main idea is to proceed one hypothesis
(gene) at a time, instead of one permutation at a time, and to compute the
B raw p-values for each hypothesis by sorting the B test statistics using
the quick sort algorithm. To see this, first compute the permutation raw
p-values p∗i and assume without loss of generality that p∗1 ≤ p∗2 ≤ · · · ≤ p∗m.
Consider the following three key m×B matrices: a matrix of test statistics

T =




t1,1 t1,2 · · · t1,b · · · t1,B
...

...
...

...
ti,1 ti,2 · · · ti,b · · · ti,B
...

...
...

...
tm,1 tm,2 · · · tm,b · · · tm,B




,

a matrix of raw p-values
P =

[
pi,b

]
,

and a matrix of minima of raw p-values

Q =
[

qi,b

]
,

where qi,b = minl=i,...,m pl,b and the bth column of these matrices corre-
sponds to a data matrix Xb, say, with permuted columns. In this matrix
representation, the double permutation algorithm in Box 3 would compute
the columns of matrices T , P , and Q one at a time. The permutation p-
values in column b of P would be obtained by considering B permutations
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Box 4. A new permutation algorithm for step-down minP ad-
justed p-values

0. Compute raw p-values for each hypothesis. Assume p∗1 ≤ p∗2 ≤
· · · ≤ p∗m without loss of generality, otherwise sort the rows of the
data matrix X according to the ordered p∗i . Initialize qm+1,b = 1
for b = 1, . . . , B. Initialize i = m.

1. For hypothesis Hi (row i), compute the B permutation test statis-
tics ti,1, . . . , ti,B and use the quick sort algorithm to get the B
raw p-values pi,1, . . . , pi,B as in Section 4.4.1.

2. Update the successive minima qi,b

qi,b ← min(qi+1,b, pi,b), b = 1, . . . , B.

3. Compute the adjusted p-values for hypothesis Hi

p̃∗i =
#{b : qi,b ≤ p∗i }

B
.

4. Delete pi,1, . . . , pi,B [row i of P ].
Delete qi+1,1, . . . , qi+1,B [row i + 1 of Q].

5. Move up one row, i.e., i ← i− 1.
If i = 0, go to step 6, otherwise, go to step 1.

6. Enforce monotonicity of p̃∗i

p̃∗1 ← p̃∗1, p̃∗i ← max
(
p̃∗i−1, p̃

∗
i

)
for i = 2, . . . , m.

of the columns of Xb and computing the matrix T all over again (with
different order of the columns). Our new algorithm computes the matrix
T only once and deals with the rows of T , P , and Q sequentially, starting
with the last.
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4.4.1 Use of order statistics to compute the raw p-values

To avoid the double permutation for the algorithm in Box 3, one could
compute each row of T , P , and Q as follows. From the permutation dis-
tribution of Ti, ti,1, ti,2, . . . , ti,B, obtain the permutation distribution of Pi,
pi,1, pi,2, . . . , pi,B, simultaneously from

pi,b =
#{b′ : |ti,b′ | ≥ |ti,b|}

B
. (4.1)

Although this method avoids the double permutation of the algorithm in
Box 3, the computational complexity is the same, as the computing of
each raw p-value needs B computations from equation (4.1). However,
the idea of computing pi,1, pi,2, . . . , pi,B simultaneously can be refined as
follows. Order the ith row of matrix T and let rb, b = 1, . . . , B, be such
that |ti,r1 | ≥ |ti,r2 | ≥ · · · ≥ |ti,rB |. Note that the rb will in general vary
from row to row, not to be confused with our general notation for the
rank indices of the raw p-values. In our new algorithm, the computational
time for estimating the pi,b for each row is reduced by using the quick sort
algorithm, which requires O(B log B) computations compared to O(B2) for
a crude bubble sorting algorithm.

No ties. If there are no ties, the B raw p-values may be obtained from

pi,rj =
j

B
for j = 1, . . . , m.

Ties. With small modifications, ties may be handled as follows. Let
the statistics t1, t2, · · · , tm be ordered as

|ti,r1
1
| = · · · = |t

i,r
k1
1
| > |ti,r1

2
| = · · · = |t

i,r
k2
2
|

...
...

> |ti,r1
J
| = · · · = |t

i,r
kJ
J

|.

and
∑J

j=1 kj = B. Note that kj , J , and rk
j will in general vary from row to

row. Then the B raw p-values may be obtained from

pi,r1
j

= · · · = p
i,r

kj
j

=
∑j

l=1 kl

B
, j = 1, . . . , J.
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4.4.2 Storage

Storing the entire T , P , and Q matrices requires O(Bm) memory, which
in the Apo AI experiment of Section 6.1 corresponds to O(12,780× 6,356),
that is, about 284 Megabytes (12,780 × 6,356 × 4, as each number needs
4 bytes to store). However, for the proposed algorithm in Box 4, only
individual rows of the T , P , and Q matrices are required at any given time.
The storage requirements of the algorithm are thus O(B) for rows of T , P ,
and Q and O(m) for the raw p-values p∗1 ≤ p∗2 ≤ · · · ≤ p∗m, the data matrix
X (assuming the number of experiments, n, is small).

4.4.3 Further remarks

1. As with the double permutation algorithm in Box 3, the algorithm in
Box 4 can be used for any type of test statistic (t-, F -statistics, etc.), and
allows for different test statistics to be used for different hypotheses. The
algorithm in Box 4 can also be modified easily for one-sided hypotheses.

2. The algorithm in Box 4 requires the same permutation order to be
kept for each row. When all possible permutations are considered, the same
enumeration can be used for computing each row. When a random subset
of B permutations is used, the B permutations can be stored in a number
of ways, including the following two.

(a) For each row, reset the random seed at the same fixed value, and
use the same function to generate the B random permutations.

(b) For a k class problem, where k ≥ 2, recode each permutation as an
integer corresponding to the binary representation of the permutation. For
example, for n1 observations from class 1, n2 observations from class 2, . . .,
nk observations from class k, n = n1 +n2 + · · ·+nk, any given permutation
can be represented as an n-vector a = (a1, . . . , an), where aj = c − 1 if
sample j is assigned to class c (c is dependent on the sample j). The vector
a can be mapped to an integer by f(a) =

∑n
j=1 kj−1aj .

3. The storage space for individual rows of T , P , and Q is O(B) and
the storage space for strategy (b) in comment (2) is also O(B).

In summary, the computational complexity of the new algorithm for
minP adjusted p-values is given in Table 3.

Note that we did not consider n, the sample size (number of arrays), as
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Running time Space
Double permutation algorithm O(mB2 + m log m) O(m)

New algorithm O(mB log B + m log m) O(m + B)

Table 3: Computational complexity of double permutation algorithm and new

minP algorithms. The number of hypotheses (genes) is denoted by m and the

number of permutations by B.

it is typically very small compared to m and B. Obviously, the maximum
number of permutations B depends on n, for example in the two-class case
B = n!

n1!n2! .

5 Procedures to control FDR or pFDR

Recall the notation for the different type I error rates and the two definitions
of false discovery rates given in Section 2.2. The latter arise by treating V/R
differently in estimating E(V/R) when R = 0. Benjamini and Hochberg
(1995) suppose that V/R = 0 when R = 0, while Storey (2002a) uses
the conditional expectation of V/R given R > 0, termed the positive false
discovery rate. Earlier ideas related to FDR can be found in Seeger (1968)
and Sorić (1989).

5.1 Frequentist approach

5.1.1 FDR with independent null hypotheses

Benjamini and Hochberg (1995) (BH) derived a step-up procedure for
strong control of the FDR for independent null p-values, although the in-
dependence assumption under the alternative hypothesis is not necessary.
FDR is there defined as E

(
V
R1{R>0}

)
. Under the complete null hypothesis,

i.e. when m0 = m, FDR is equal to FWER, and so a procedure controlling
FDR also controls FWER in the weak sense. Using notation from Section
3, let the observed raw p-values be pr1 ≤ pr2 ≤ · · · ≤ prm . Starting from
i = m, and then taking i = m − 1, etc., until i = 1 (the step-up order),
define i∗ be the first integer i such that pri ≤ i

mα. If i∗ is not defined, then
reject no hypothesis; otherwise, reject hypotheses Hri for i = 1, . . . , i∗.
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As with the definition of FWER adjusted p-values, the adjusted p-value
corresponding to the BH procedure is

p̃ri = min
k=i,...,m

{
min

(m

k
prk

, 1
)}

. (5.1)

Benjamini and Hochberg (1995) proved that under the conditions stated
in the previous paragraph,

E

(
V

R
1{R>0}

)
≤ m0

m
α ≤ α. (5.2)

When m0 = m, this procedure provides weak control of the FWER.
Indeed, exactly this weak control was shown in Seeger (1968). Simes (1986)
rediscovered this approach and also gave the proof. The proof by Benjamini
and Hochberg (1995) giving strong control of FDR greatly expanded the
popularity of this procedure.

5.1.2 FDR under general dependence

Benjamini and Yekutieli (2001) (BY) proved that the procedure based on
equation (5.1) controls FDR under certain more general assumptions (pos-
itive regression dependency). In addition, they proposed a simple con-
servative modification of the original BH procedure which controls FDR
under arbitrary dependence. For control of the FDR at level α, going from
i = m, i = m − 1, . . ., until i = 1, define i∗ the first integer i such that
pri ≤ i

m
Pm

l=1 1/l
α. If no such i∗ exists, then reject no hypothesis; otherwise,

reject hypotheses Hri for i = 1, . . . , i∗. The adjusted p-values for the BY
procedure can be defined by

p̃ri = min
k=i,...,m

{
min(

m
∑m

l=1 1/l

k
prk

, 1)
}

. (5.3)

For a large number m of hypotheses, the penalty of the BY procedure
is about log(m) in comparison with the BH procedure of equation (5.1).
This can be a very large price to pay for allowing arbitrary dependence.
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5.2 Bayesian motivation

5.2.1 pFDR under independence or special dependence

Storey (2002a) defined the pFDR as E(V
R | R > 0). We need to estimate

the pFDR in order to estimate the q-value, which we regard as the pFDR
analogue of adjusted p-values. From equation (2.5), it is easy to see that

pFDR(p) =
π0 · Pr(P ≤ p | H = 0)

Pr(P ≤ p)
=

π0p

Pr(P ≤ p)
.

Since mπ0 of the p-values are expected to be null, π0 can be estimated from
the largest p-values, say those greater than some prespecified p0. The value
of p0 can be chosen as the median of all p-values, or 1/2, or an optimized
choice for p0 can be made, see Storey and Tibshirani (2001) where the
notation λ is used. Given a suitable p0, a conservative estimate of π0 will
be

π̂0 =
W (p0)

(1− p0)m
,

where W (p) = #{i : pi > p}, and Pr(P ≤ p) can be estimated by

P̂r(P ≤ p) =
R(p)
m

,

where R(p) = #{i : pi ≤ p}.
Since pFDR is conditioned on R > 0, a conservative estimate of Pr(R >

0) when the rejection region is [0, p] and the p-values are independent is

P̂r(R > 0) = 1− (1− p)m.

It follows that an estimate of pFDR at [0, p] is

p̂FDRp0
(p) =

π̂0(p0) · p
P̂r(P ≤ p) · P̂r(R > 0)

=
W (p0) · p

(1− p0) · (R(p) ∨ 1) · (1− (1− p)m)
. (5.4)

Dropping the estimate of Pr(R > 0), we can estimate the FDR at [0, p]
by

F̂DRp0(p) =
W (p0) · p

(1− p0) · (R(p) ∨ 1)
. (5.5)
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Note that these expressions are estimated under the assumptions that
either the null Pi are independently and identically distributed, or that they
satisfy a special dependence condition, see Storey (2002a) for full details.

5.2.2 pFDR under more general dependence

Storey and Tibshirani (2001) (ST) extend the foregoing to apply under
more general dependence assumptions involving certain ergodic conditions.
We just sketch the ideas of the extension and the algorithm here, referring
readers to the paper for fuller details.

First, equation (5.4) can also be written in terms of a general family of
nested rejection regions {Γα} as

p̂FDRΓα0
(Γα) =

π̂0(Γα0) · α
P̂r(T ∈ Γα) · P̂r(R > 0)

=
W (Γα0) · α

(1− α0) · (R(Γα) ∨ 1) · P̂r(R > 0)
, (5.6)

where R(Γ) = #{i : Ti ∈ Γ} and W (Γ) = #{i : Ti 6∈ Γ} = m−W (Γ).

Note that the term P̂r(R > 0) is still retained. In this equation Γα is
the level α rejection region. Now consider a general rejection region Γ, for
example [−∞,−c]∪[c,∞] for a two-sided alternative, and let us estimate an
analogue of the preceding formula by resampling. Take a region Γ0 which
is believed to contain mostly null hypotheses. If we denote B resamplings
of null test statistics by ti,b, i = 1, . . . ,m, b = 1, . . . , B, then estimates of
the quantities α, α0 and Pr(R > 0) in the preceding formula are as follows:

α̂ =
1

Bm

B∑

b=1

Rb(Γ) =
R(Γ)
m

,

α̂0 =
1

Bm

B∑

b=1

Rb(Γ0) =
R(Γ0)

m
,

P̂r(R > 0) =
#{b : Rb(Γ) > 0}

B
= I{R(Γ)>0},

where Rb(Γ) = #{i : ti,b ∈ Γ}, R(Γ) = 1
B

∑B
b=1 Rb(Γ), and similarly for

Wb(Γ) and W (Γ). Similar quantities for the rejection region Γ0 can be
defined.
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Putting these all together, a conservative estimate of pFDR(Γ), making
use of Γ0 is

p̂FDRΓ0
(Γ) =

W (Γ0) ·R(Γ)

(m−R(Γ0)) · (R(Γ) ∨ 1) · P̂r(R > 0)

=
W (Γ0) ·R(Γ)

W (Γ0) · (R(Γ) ∨ 1) · I{R(Γ)>0}
. (5.7)

By dropping the estimate of Pr(R > 0), we can have a conservative
estimate of FDR(Γ) as

F̂DRΓ0(Γ) =
W (Γ0) ·R(Γ)

(m−R(Γ0)) · (R(Γ) ∨ 1)
=

W (Γ0) ·R(Γ)
W (Γ0) · (R(Γ) ∨ 1)

. (5.8)

5.2.3 Estimation of pFDR q-values

Using the definition of q-values given in equations (2.4) and (2.3), the es-
timates of the q-value corresponding to the ordered p-values pr1 ≤ pr2 ≤
· · · ≤ prm are

q̂p0(pri) = min
k=i,...,m

p̂FDRp0
(prk

). (5.9)

If our interest is in deriving q-values corresponding to the t-statistics,
let us suppose that |ts1 | ≥ |ts2 | ≥ · · · ≥ |tsm |. Writing Γsk

be [−∞,−|tsk
|]∪

[|tsk
|,∞], the q-values are then

q̂Γ0
(tsi) = min

k=i,...,m
p̂FDRΓ0

(Γsk
). (5.10)

Remark 5.1. Storey (2002a) has already pointed out that the FDR esti-
mate based on equation (5.5) gives a procedure to control FDR. To see how
this occurs, note that R(prk

) = k, for k = 1, . . . ,m, and that π̂0 = W (p0)
(1−p0)m .

Substituting these into (5.5) and enforcing step-up monotonicity, FDR-
based adjusted p-values can be estimated by

p̃ri = min
k=i,...,m

{
min

(m

k
prk

π̂0, 1
)}

. (5.11)

We call this the Storey procedure. Equation (5.4) and enforced mono-
tonicity can also be used to compute q-values for controlling pFDR, and we
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call this the Storey-q procedure. Similarly, the ST-procedure uses equation
(5.8) and enforced monotonicity for controlling FDR under quite general
dependence satisfying ergodic conditions, while the ST-q procedure used
equation (5.7) and monotonicity to control pFDR. Details of these proce-
dures are given in Box 5.

Comparing equation (5.11) with equation (5.1), it is easy to see that the
method proposed by Storey (2002a) has advantages over that of Benjamini
and Hochberg (1995), since π̂0 is less than or equal to 1. This should be no
surprise, since equation (5.1) controls the FDR in the strong sense, while
equation (5.11) controls the FDR in the exact sense, with an estimated
π0. If we are only considering the FDR in the exact sense, then π0 can be
estimated, and by noting that m0

m = π0 in equation (5.2) the two procedures
are seen to be the same. Thus we come to see that exact control might give
improvements in power over strong control. Similarly, we can replace m0 in
equations (3.2) and (3.5) to get more powerful single-step Bonferroni and
Šidák adjustments. Indeed, Benjamini and Hochberg (2000) proposed a
different estimator of π̂0, but Storey (2002a) proved that his method leads
to conservative control of FDR.

5.3 Resampling procedures

For the BH and BY adjustments we simply use the algorithm in Box 1 and
equations (5.1) and (5.3). For the Storey and Storey-q procedures, we first
use the algorithm in Box 1 to compute the raw p-values for each gene, and
then use equations (5.5) for the Storey procedure and (5.4) for Storey-q
procedure, lastly enforcing step-up monotonicity for each procedure.

A complete algorithm is outlined in Box 5 for the ST and ST-q proce-
dures. Note that our algorithm is slightly different from the original one,
for we do not pool the t-statistics across all genes as did Storey and Tib-
shirani (2001). The reason we have not pooled across genes here is that
we have not done so elsewhere in this paper. We feel that more research
is needed to provide theoretical and practical justification of the pooling
strategy of Storey and Tibshirani (2001).
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Box 5. A permutation algorithm for the ST-q and ST proce-
dures - based on Storey and Tibshirani (2001) Algorithm 1
Choose a value τ0 believed to contain most null hypotheses (for example,
τ0 = 0.2). From the original data, compute the two-sample t-statistics,
let τi = |ti| and assume without loss of generality τ1 ≥ · · · ≥ τm; other-
wise sort the rows of the data matrix according to the ordered τi.
Compute Ri = #{k : |tk| ≥ τi}, and W0 = #{k : |tk| ≤ τ0}.
For the bth permutation, b = 1, . . . , B:

1. Permute the n columns of the data matrix X.

2. Compute test statistics t1,b, . . . , tm,b for each hypothesis.

3. Compute Ri,b = #{l : |tl,b| ≥ τi} for i = 1 . . . , m and W0,b = #{i :
|ti,b| ≤ τ0}

The above steps are repeated B times, and then for i = 1, . . . ,m estimate

Ri =
1
B

B∑

b=1

Ri,b, Ii =
1
B

B∑

b=1

I(Ri,b > 0), W 0 =
1
B

B∑

b=1

W0,b.

Then at τi the pFDR is

pFDRi =
W0 ·Ri

W 0 · (Ri ∨ 1) · Ii

for i = 1, . . . , m,

and the FDR is

FDRi =
W0 ·Ri

W 0 · (Ri ∨ 1)
for i = 1, . . . , m.

The q-values (for the ST-q procedure) and the FDR-based adjusted p-
values (ST-procedure) can then be estimated by enforcing step-up mono-
tonicity as follows:

qm = pFDRm, qi = min(qi+1, pFDRi), for i = m− 1, . . . , 1,

p̃m = FDRm, p̃i = min(p̃i+1,FDRi), for i = m− 1, . . . , 1.
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5.4 Empirical Bayes procedures and the SAM software

Several papers (Efron et al. (2000, 2001); Efron and Tibshirani (2002))
connect empirical Bayes methods with false discovery rates. Also, the
popular software SAM (Significance Analysis of Microarrays) (Efron et al.
(2000); Tusher et al. (2001)) computes false discovery rates from a frequen-
tist viewpoint. The empirical Bayes calculations and the SAM software
provide estimates of the FDR, but it is not clear whether these procedures
provide strong control of the FDR, i.e. whether E(V/R | HM0) ≤ α for
any subset M0. More theoretical work would seem to be needed to address
these issues, see e.g. Dudoit et al. (2002a), and for this reason we will not
discuss them further.

6 Data

6.1 Apo AI experiment

The Apo AI experiment (Callow et al. (2000)) was carried out as part of
a study of lipid metabolism and atherosclerosis susceptibility in mice. The
apolipoprotein AI (Apo AI) is a gene known to play a pivotal role in HDL
metabolism, and mice with the Apo AI gene knocked out have very low
HDL cholesterol levels. The goal of this Apo AI experiment was to identify
genes with altered expression in the livers of these knock-out mice compared
to inbred control mice. The treatment group consisted of eight mice with
the Apo AI gene knocked out and the control group consisted of eight wild-
type C57Bl/6 mice. For each of these 16 mice, target cDNA was obtained
from mRNA by reverse transcription and labeled using the red fluorescent
dye, Cy5. The reference sample used in all hybridizations was prepared
by pooling cDNA from the eight control mice and was labeled with the
green fluorescent dye, Cy3. Target cDNA was hybridized to microarrays
containing 6,356 cDNA probes, including 200 related to lipid metabolism.
Each of the 16 hybridizations produced a pair of 16-bit images, which were
processed using the software package Spot (Buckley (2000)). The result-
ing fluorescence intensities were normalized as described in Dudoit et al.
(2002b). For each microarray j = 1, . . . , 16, the base 2 logarithm of the
Cy5/Cy3 fluorescence intensity ratio for gene i represents the expression
response xij of that gene in either a control or a treatment mouse.
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Differentially expressed genes were identified using two-sample Welch
t-statistics (Welch (1938)) for each gene i:

ti =
x̄2i − x̄1i√

s2
2i

n2
+ s2

1i
n1

,

where x̄1i and x̄2i denote the average expression level of gene i in the
n1 = 8 control and n2 = 8 treatment hybridizations, respectively. Here s2

1i

and s2
2i denote the variances of gene i’s expression level in the control and

treatment hybridizations, respectively. Large absolute t-statistics suggest
that the corresponding genes have different expression levels in the control
and treatment groups. In order to assess the statistical significance of
the results, we use the multiple testing procedures of Sections 3 and 5,
estimating raw and adjusted p-values based on all possible

(
16
8

)
= 12,870

permutations of the treatment and control labels.

6.2 Leukemia study

Golub et al. (1999) were interested in identifying genes that are differen-
tially expressed in patients with two type of leukemias, acute lymphoblastic
leukemia (ALL, class 1) and acute myeloid leukemia (AML, class 2). Gene
expression levels were measured using Affymetrix high-density oligonu-
cleotide arrays containing p = 6,817 human genes. The learning set com-
prises n = 38 samples, 27 ALL cases and 11 AML cases (data available at
http://www.genome.wi.mit.edu/MPR). Following Golub et al. (personal
communication, Pablo Tamayo), three preprocessing steps were applied
to the normalized matrix of intensity values available on the website: (i)
thresholding: floor of 100 and ceiling of 16,000; (ii) filtering: exclusion of
genes with max /min ≤ 5 or (max−min) ≤ 500, where max and min re-
fer respectively to the maximum and minimum intensities for a particular
gene across mRNA samples; (iii) base 10 logarithmic transformation. Box-
plots of the expression levels for each of the 38 samples revealed the need
to standardize the expression levels within arrays before combining data
across samples. The data were then summarized by a 3,051 × 38 matrix
X = (xij), where xij denotes the expression level for gene i in mRNA
sample j.

Differentially expressed genes in ALL and AML patients were identified
by computing two-sample Welch t-statistics for each gene i as in Section 6.1.
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In order to assess the statistical significance of the results, we considered
the multiple testing procedures of Sections 3 and 5 and estimated raw and
adjusted p-values based on B = 10,000, 100,000 and 1,000,000 random
permutations of the ALL/AML labels.

7 Results

The Holm, step-down maxT, and step-down minP procedures described in
Sections 3 and 4, the BH, BY, Storey and ST procedures to control FDR
in Section 5, and the Storey-q and ST-q procedures to control pFDR in
Section 5 were applied to the two microarray datasets of Section 6. Figure
1 gives the results for the Apo AI knock-out data described in Section
6.1. It consists of three panels corresponding to three type I error rate
controlling procedures. The top panel is for FWER, the middle one is for
FDR and the bottom one is for pFDR. For each panel, the x-axis is always
the rank of p-values. Note, the rank of different adjusted p-values is always
the same as the rank of the raw p-values apart from the maxT procedure.
In that case, the adjusted p-values have the same ranks as the two-sample
t-statistics.

Similarly, Figure 2 gives the results of applying these procedures to
the Golub leukemia dataset described in Section 6.2. Note that for both
datasets, the adjusted p-values for FWER are mostly higher than the ad-
justed p-values for FDR, which in turn are a little lower than the q-values
for pFDR. This was to be expected by the inequalities in equation (2.1).

For the FWER procedures, the greatest difference between the maxT
and minP procedures occurred for the Apo AI dataset and the leukemia
dataset with the smallest number of permutations B = 10,000. In these
two cases, the procedures only rejected hypotheses at FWER level less than
0.18 for the leukemia data and 0.53 for the Apo AI data. This was due to
the discreteness of the permuted raw p-values used to compute the Holm,
and minP adjusted p-values. For the Apo AI dataset, with sample sizes
n1 = n2 = 8, the total number of permutations is only

(
16
8

)
= 12,870, and

hence the two-sided raw p-values must be at least 2/12,870. As a result, the
Holm p-values can be no smaller than 6,356×2/12,870 ≈ 1. This highlights
the greater power of the maxT p-value procedure in comparison with the
Holm and the minP procedure, when the number of permutations is small.
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Figure 1: Apo AI. Plot of adjusted p-values controlling different type I error rates

against the rank of the p-values. p-values were estimated using all B =
(
16
8

)
=

12,870 permutations. The top, middle and bottom panels are adjusted p-values

controlling FWER, FDR and pFDR, respectively.

To investigate the robustness of the Holm, maxT, and minP adjusted
p-values to varying the number of permutations, we computed them for the
leukemia dataset with B = 10,000, 100,000 and 1,000,000 permutations.
Figure 3 showed that indeed the minP p-values were very sensitive to the
number of permutations. After 100,000 permutations, the adjusted p-values
become stable, while similar results for the Holm p-values are not shown.



Resampling-based Multiple Testing for Microarray Data Analysis 35

0 500 1000 1500 2000 2500 3000

0.
0

0.
4

0.
8

FWER procedures

rank of p−value

ad
ju

st
ed

 p
−

va
lu

e

rawp
maxT
minP
Holm

0 500 1000 1500 2000 2500 3000

0.
0

0.
4

0.
8

FDR procedures

rank of p−value

ad
ju

st
ed

 p
−

va
lu

e

rawp
BH
BY
Storey
ST

0 500 1000 1500 2000 2500 3000

0.
0

0.
4

0.
8

pFDR procedures

rank of p−value

q−
va

lu
e

rawp
Storey−q
ST−q

Figure 2: Leukemia. Plot of adjusted p-values to controlling different type I error

rates against the rank of the p-values. p-values were estimated using B = 10,000
random permutations. The top, middle and bottom panels are adjusted p-values

controlling FWER, FDR and pFDR, respectively.

On the other hand, the maxT adjustment was much more robust, for as seen
in Figure 4 the adjusted p-values with B = 10,000, 100,000 and 1,000,000
are almost identical.

The FDR and pFDR procedures are also robust to the number of permu-
tations, as they became stable for as few as B = 1,000 permutations. This
is because these procedures use only a single round of permutations. The
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Figure 3: Leukemia. Plot of minP adjusted p-values against the rank of adjusted

p-values. p-values were estimated based on B = 10,000, 100,000 and 1,000,000
random permutations.

BH adjusted values are very similar to the Storey and ST adjusted values,
while the BY adjustments, trying to control FDR under arbitrary depen-
dence, seem too conservative. The BY procedure gives adjusted p-values
higher than those from the maxT procedure with the Apo AI dataset, and
similar to them with the leukemia dataset. It seems that the BY procedure
is not very useful in this context. The Storey-q and ST-q adjusted values
are similar to each other, which could imply that the ability of ST-q to deal
with dependence is not very great, or that there is not much dependence
in the data.

Apo AI experiment. In this experiment, eight spotted DNA sequences
clearly stood out from the remaining sequences and had maxT adjusted
p-values less than 0.05. The ST procedures also pick the same 8, while all
other procedures fail to pick them using a 0.05 cut-off. These eight probes
correspond to only four distinct genes: Apo AI (3 copies), Apo CIII (2
copies), sterol C5 desaturase (2 copies), and a novel EST (1 copy). All
changes were confirmed by real-time quantitative RT-PCR as described
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Figure 4: Leukemia. Plot of maxT adjusted p-values against the rank of adjusted

p-values estimated using B = 10,000, 100,000 and 1,000,000 random permutations.

Dataset Running times
Fast minP maxT

Apo AI 9:38.89 3:4.23
Leukemia B = 10,000 5:53.42 2:0.93

B = 100,000 1:03:27.17 18:46.24
B = 1,000,000 11:10:3.74 3:09:31.17

Table 4: Running times of the fast minP and maxT algorithms for the Apo AI and

leukemia datasets. Reported times are “user times” on Sun 200Mhz Ultrasparc

workstations. The time is given in hours, minutes and seconds, e.g. 11:10:3.74

means 11 hours 10 minutes and 3.74 seconds

in Callow et al. (2000). The presence of Apo AI among the differentially
expressed genes is to be expected as this is the gene that was knocked out
in the treatment mice. The Apo CIII gene, also associated with lipoprotein
metabolism, is located very close to the Apo AI locus and Callow et al.
(2000) showed that the down-regulation of Apo CIII was actually due to
genetic polymorphism rather than absence of Apo AI. The presence of Apo
AI and Apo CIII among the differentially expressed genes thus provides a
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check of the statistical method, even if it is not a biologically interesting
finding. Sterol C5 desaturase is an enzyme which catalyzes one of the
terminal steps in cholesterol synthesis and the novel EST shares sequence
similarity to a family of ATPases.

For Apo AI, we also considered adjusted p-values for non-parametric
rank t-statistics. In this case, none of the procedures rejected any hypothe-
ses at level less than 0.05. The poor performance of the maxT procedure
using ranked data is likely due to the discreteness of the t-statistics com-
puted from the ranks with a small sample size.

We also did a limited analysis to see how data selection affects adjusted
p-values. For the Apo AI dataset, we selected the 10% of the 6,356 genes
with the largest variances across the 16 samples, recomputed the step-down
minP and maxT adjusted p-values. The adjusted p-values for the selected
genes were always smaller or equal than the those for same genes within the
complete data set (data not shown), and sometimes much smaller. This is
reasonable, as a smaller number of hypotheses leads to smaller adjustments,
but it highlights the fact that adjusted p-values will be affected by data pre-
processing steps such as gene selection.

Leukemia study. Using the maxT adjustment, we found 92 (38) genes
significant at the 0.05 (0.01) level, respectively. Among the 50 genes listed
in Golub et al. (1999) (p.533 and Figure 3B), we found that 9 of those
were not significant at the 0.05 level, and 27 of those were not significant
at the 0.01 level. If we select 50 genes with the smallest adjusted p-values,
22 genes of Golub et al. (1999) (p.533 and Figure 3B) are not in our top
50 gene list. The results of minP were similar to those of maxT. We refer
the reader to Golub et al. (1999) for a description of the genes and their
involvement in ALL and AML. Note that this dataset is expected to have
many genes differentially expressed between the two groups, and in this
respect it is quite different from the Apo AI experiment, where we do not
expect many genes to be differentially expressed. Since the Storey and ST
procedures use information on the fraction of genes expected to be null,
they can lead to adjusted p-values lower than the raw p-values, see the tail
parts of the middle and bottom panels in Figure 2. In practice, we need not
worry about this as only genes with small adjusted p-values (e.g. less than
0.05 or 0.10) are interesting, even in an exploratory analysis. A strategy
to prevent this from happening would be to take the minimum of the raw
p-values and the adjusted p-values. One final comment on this analysis:
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the pre-processing for this dataset that was described in Section 6.2, in
particular the filtering, would undoubtedly have an impact on the size of
the adjusted p-values, perhaps reducing them considerably.

8 Discussion

8.1 Use of the new algorithm with the bootstrap and with other
statistics.

In this paper, we gave a brief review of multiple testing procedures used
in the analysis of microarray experiments. In particular we introduced a
new and faster algorithm for calculating the step-down minP p-value ad-
justments. This algorithm not only makes it possible to analyze microarray
data within the multiple testing framework, it also solves the general multi-
ple testing problem described on page 114 of Westfall and Young’s book as
the double permutation problem. In brief, our algorithm reduces compu-
tational time from B2 to B log B, where B is the number of permutations.
The idea of the algorithm can be extended to the bootstrap situation as
well. The resampling-based test statistics simply need to be computed
from samples with replacement rather than from permutations. We have
described how to calculate adjusted p-values for two sample t-statistics,
but the algorithm applies equally to other test statistics, such as the t with
pooled variance, Wilcoxon, F , paired t, and block F -statistics.

In order to see this, let us focus on one gene only. Then we define the

(a) t-statistic with pooled variance: Let yij (i = 1, 2, j = 1, 2, . . . , ni

and n1 + n2 = n) be the observations from two treatments. Define
yi. = 1

ni

∑ni
j=1 yij , i = 1, 2. The t-statistic with pooled variance is:

t =
y2. − y1.√

1
n−2{

∑n1
j=1(y1j − y1.)2 +

∑n2
j=1(y2j − y2.)2}( 1

n1
+ 1

n2
)
.

(b) Wilcoxon: The yij are defined as in (a). Rank all n observations, and
denote the rank of observation yij by sij , i = 1, 2, j = 1, 2, . . . , ni. The
rank sum statistic is T =

∑n2
j=1 s2j . As we have E(T ) = n2(n + 1)/2,

V ar(T ) = n1n2(n + 1)/12, the normalized statistic is:

W =

∑n2
j=1 s2j − n2(n + 1)/2√

n1n2(n + 1)/12
.
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(c) F -statistic: Let yij (i = 1, 2, . . . , k, j = 1, 2, . . . , ni and
∑k

i=1 ni = n)
be the observations from a one-way design. For treatment i, there are
independent observations yi1, yi2, . . . , yini . Define yi. = 1

ni

∑ni
j=1 yij

and y.. = 1
n

∑k
i=1

∑ni
j=1 yij . Then the F -statistic is

F =
∑k

i=1 ni(yi. − y..)2/(k − 1)∑k
i=1

∑ni
j=1(yij − yi.)2/(n− k)

.

(d) Paired t-statistic: Let yij (i = 1, 2, j = 1, 2, . . . , n) be n pairs of
observations. If write xi = y2i − y1i, then the paired t-statistic is

paired t =
x̄√

1
n

∑n
i=1(xi − x̄)2/(n− 1)

.

(e) Block F -statistic: Let yij (i = 1, 2, . . . , k, j = 1, 2, . . . , n) be the ob-
servations from a randomized block design with k treatments and
n blocks. The observation on treatment i in block j is yij . Define
yi. = 1

n

∑n
j=1 yij , y.j = 1

k

∑k
i=1 yij and y.. = 1

nk

∑k
i=1

∑n
j=1 yij , then

the block F -statistic is

block F =
∑k

i=1 n(yi. − y..)2/(k − 1)∑k
i=1

∑n
j=1(yij − yi. − y.j + y..)2/(n− 1)(k − 1)

.

Note that the t-statistic with pooled variance can be regarded as a special
case of the F -statistic. Similarly, the paired t-statistic can be regarded as a
special case of the block F -statistic. The Wilcoxon statistic is the nonpara-
metric form of the t-statistic with pooled variance. Similarly, we can define
other nonparametric statistics corresponding to the F , block F and paired
t-statistics by replacing the observations yij with their corresponding ranks
sij .

8.2 Which multiple testing procedure?

We have seen a bewildering variety of multiple testing procedures. How
should we choose which to use? There are no simple answers here, but each
procedure can be judged according to a number of criteria. Interpretation:
does the procedure answer a question that is relevant to the analysis? Type
of control: weak, exact or strong? Validity: are the assumptions under
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which the procedure is valid definitely or plausibly true, or is their truth
unclear, or are they most probably not true? And finally, computability:
are the procedure’s calculations straightforward to perform accurately, or
is there substantial numerical or simulation uncertainty, or discreteness?

In this paper, we have learned a little about the procedures which con-
trol different type I error rates. From equation (2.1), the FWER is the most
stringent, while FDR is the most relaxed, and pFDR is roughly in between.
In microarray experiments, where we consider many thousands of hypothe-
ses, FDR or pFDR are probably better criteria than FWER. Most people
would be more interested in knowing or controlling the proportion of genes
falsely declared differentially expressed, than controlling the probability of
making one or more such false declarations. Most would not consider it
a serious problem to make a few wrong decisions as long as the majority
of the decisions are correct. The FDR and pFDR procedures promise to
respond to this need, but there remain issues of validity.

It will take a while before we accumulate enough experience to know
which approach leads to truer biological conclusions on a large scale, that
is, which in truth better balances false positives and false negatives in
practice. The FWER-based maxT procedure successfully identified the 8
differentially expressed genes in the Apo AI dataset which have been bi-
ologically verified, though the identical distribution assumption is highly
doubtful, see below. For the Golub leukemia dataset, maxT gave a smaller
number of differentially expressed genes than the FDR-based procedures,
but no large scale validation has been done to determine the truth there.
It seems possible that when just a few genes are expected to be differen-
tially expressed, as with the Apo AI dataset, it might be a good idea to
use FWER-based procedures, while when many genes are expected to be
differentially expressed, as with the leukemia dataset, it might be better to
use FDR or pFDR-based procedures.

Of all the procedures described in this paper, only Holm, minP and
BY are essentially assumption-free. However, Holm and BY suffer from
being far too conservative. On the other hand, minP is useful if we have
enough experiments so that there are enough permutations to eliminate
the discreteness of the p-values. While maxT is much less sensitive to
the number of permutations, it does require the assumption of identical
distributions. The strength of maxT and minP is that they are exploit-
ing the dependence in the test statistics in order to improve power. By
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contrast, the Šidák, BH, Storey and ST procedures are motivated by in-
dependence (and perhaps identical distribution) assumptions on the test
statistics. They try to extend results valid under independence to more
general situations by imposing special conditions: the Šidák inequality for
the Šidák procedure, positive regression dependency for BH, and ergodic
conditions for the Storey procedure. For a start, it is difficult to see how we
can be sure that these conditions apply with microarray data. Further, it is
hard for these procedures to improve power, as they do not fully exploit the
information concerning dependence in the dataset. A potentially fruitful
direction for future research is to develop variants of the FDR procedures
similar to maxT or minP, which permit arbitrary dependence between the
test statistics, and which automatically incorporate this dependence into
the procedures in order to improve power.

Other issues are computational complexity and discreteness. We have
seen that minP is the most computationally expensive procedure, and the
computational burden can be substantial, even with our new algorithm.
Table 4 shows the running time for minP and maxT giving different num-
bers B of permutations. Figure 5 shows the curves for minP and maxT
comparing to the theoretical running time. It shows that for most practical
applications, minP is about 3 times slower than the maxT procedures. The
maxT procedure has the same complexity as computing the raw p-values.
The other procedures, such as Holm, Šidák, BH, BY, Storey, and Storey-q
are all based on computing the raw p-values, they should have the same
running time as maxT. By contrast, ST and ST-q are more computation-
ally expensive than maxT if the same number B of permutations is used.
In practice, it is not necessary to run more than 1,000 permutations be-
cause ST and ST-q are quite robust to the number of permutations, so the
computational burden will be at the same level as maxT. In summary, in
terms of computational simplicity and speed, Holm, Šidák, BH, BY, Storey
and Storey-q are good choices, followed by maxT, ST and ST-q, with the
most computationally demanding being minP. We have discussed the issue
of discreteness above, and noted that it can really affect minP, indeed it
can be a real restriction on the use of minP if the number of permutations
is not large enough.
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Figure 5: Leukemia. Plot of computation time against the number of permutations

B. The dashed lines are computed using the theoretical run time formulae shown

in the legend. The constants c were computed from the timings for B = 5,000
permutations for maxT and minP separately.

8.3 The C and R code available for different tests

The algorithms for the minP and maxT adjustment are implemented in C
code, and incorporated in the R package multtest. R, Ihaka and Gentleman
(1996), is free open source software similar to S/Splus. The C code and
R package multtest may be downloaded from the Bioconductor website
http://www.bioconductor.org. Currently, the package can deal with the
t, t with pooled variance, F , paired t, Wilcoxon, and block F -statistics. It
can also deal with the nonparametric forms of those statistics. The fixed
random seed resampling method is implemented, and also the approach to
store all of the permutations (see remarks 2(a) and 2(b) in Section 4.4.3)
for most of these tests. The package also implements some FDR procedures
such as BH and BY.
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DISCUSSION

Gary Glonek and Patty Solomon
University of Adelaide, Australia

Ge, Dudoit and Speed have made a welcome and impressive contribu-
tion in the formulation of an efficient algorithm for the calculation of the
minP adjusted P-values, the provision of computer programs to implement
the various adjustments and, perhaps equally importantly, in providing
valuable insight into what is indeed a bewildering variety of methods for
multiple testing.

Our first comment concerns the applicability of these methods to mi-
croarray experiments of the type that we often encounter in practice. A key
element of any hypothesis test is the ability to obtain the null distribution
of the test statistics and most of the methods in the present paper do this
by means of permutation of the columns of the data matrix. However, in
practice we often see experiments where this approach cannot be used. The
reasons are either that there are too few slides to obtain a useful distribu-
tion from permutations or that the experimental design is such that the
null hypothesis of interest cannot be specified in terms of invariance under
a suitable set of permutations of the data. In such cases, it is very difficult
to obtain even the raw p-values without undue reliance on parametric mod-
els and their assumptions. The obvious remedy of performing experiments
with proper and adequate replication is not always easily applied. The in-
creasing capacity to produce large numbers of slides often generates larger,
more complicated experiments rather than simple highly replicated designs.
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Thus it would appear that there is still an important class of problems that
falls beyond the scope of presently available methods.

Our second remark relates to the purpose of multiple testing procedures
in the context of microarray experiments. In this paper, the motivation
given is to provide biologists with a quantitative assessment of the likely
differential expression of each gene, so that they do not have to follow
up genes with little prospect of being truly differentially expressed. The
authors argue persuasively that, at least in principle, and particularly when
many genes are expected to be differentially expressed, the FDR and pFDR
are preferable to the more traditional approach of FWER. However, we are
concerned that even these measures may not always fit with the stated
purpose. Our difficulty lies with the fact that the pFDR associated with a
particular rejection region applies to all genes within the region and does
not discriminate between those that are close to the boundary and those
that are not.

Suppose that as in Section 2.3 of Ge et al. the test statistics Zi|Hi

are distributed independently as (1 − Hi)F0 + HiF1 and that the Hi are
independent Bernoulli(π1), where π1 = 1− π0.

Example 1. Assume that F0 is the N(0, 1) distribution, F1 is the N(6, 1)
distribution and π1 = 0.1, i.e., that a small proportion of genes are expected
to be (independently) truly differentially expressed with a six-fold change
in expression on the log scale. Consider the rejection region defined by
Γ = {z : z ≥ 2}. The pFDR in this case is P (H = 0|Z ≥ 2) = 0.17 which
for many purposes is acceptably low. Suppose now the test statistic for
a particular gene is zi = 2 and consider the question of how likely is it
that such a gene is truly differentially expressed. The q-value for such a
gene is then 0.17 but the posterior probability of no differential expression
is P (H = 0|Z = 2) = 0.99972. In other words, although the pFDR for
the procedure is 17%, the rate of false discovery for genes with z ≈ 2 will
be about 99.972%. The situation is illustrated more fully in Figure 1, by
plotting both the q-value and the posterior probability of H = 0 against
z. The posterior probabilities show the region {2 ≤ z ≤ 3} to be barren
territory for differential expression despite the fact that the pFDR remains
low.
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Figure 1: q-values and posterior probabilities for π1 = 0.1, F0 = N(0, 1) and

F1 = N(6, 1).

Example 2. Assume now that F0 is the N(0, 1) distribution, F1 is the
N(1, 1) distribution and π1 = 0.4 and consider again the rejection region
defined by Γ = {z : z ≥ 2}. Here, a larger proportion (40%) of genes is
expected to be differentially expressed, but with only a two-fold change in
expression under the alternative hypothesis. Suppose the test statistic for
a particular gene is zi = 2 and consider the question of how likely is it that
such a gene is truly differentially expressed. The q-value for such a gene
is then 0.177 and the posterior probability of no differential expression
is P (H = 0|Z = 2) = 0.251. Figure 2 shows the q-values and posterior
probabilities and in this case there is clearly an abundance of differential
expression in the region {2 ≤ z ≤ 3}.

To summarise, in both examples using the rejection region Γ = {z :
z ≥ 2} results in a pFDR of approximately 17%. This threshold is clearly
too low in the first example but arguably not so in the second. On this
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Figure 2: q-values and posterior probabilities for π1 = 0.4, F0 = N(0, 1) and

F1 = N(1, 1).

basis we conclude that consideration of the pFDR alone may not be enough
to answer the question originally posed. Of course there are other issues,
both practical and theoretical, that would need to be addressed for these
ideas to be applied in practical situations involving the complexities of
microarray experimentation. Such analysis is clearly beyond the scope of
this discussion. Nevertheless we believe that our examples give cause to
question whether the pFDR alone is a suitable criterion.

Gregory R. Grant
Computational Biology and Informatics Laboratory (CBIL)

University of Pennsylvania, Philadelphia

This is a very welcome organization of some of the current theory which
has been developed for tackling the multiple testing issues which arise when
using microarrays to help find differentially expressed genes between two
conditions. The authors show where the field has arrived, and give a good
feeling for where it is going. The focus is primarily on the theoretical basis of
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the various methods and how to effectively compute them using re-sampling
based approaches. Emphasis is on controlling type I errors (false-positives),
and the authors have a fairly broad survey of the literature, including some
of their own results, for theoretically sound non-parametric methods. There
is still much to be done in the field to reduce the number of assumptions
the algorithms make to maintain effective computation without excessive
loss of power. The tradeoff is a loss of accuracy in the confidence measures
themselves. The authors present an efficient way to implement a method
which makes fewer assumptions than previously implemented methods, that
is an efficient implementation of the minP statistic. The power, however,
is probably not sufficient for most practical purposes.

The landscape of practical application of re-sampling based methods is
not much discussed. The SAM method (Tusher et al., 2001) is disregarded
as not having been sufficiently well investigated to date to consider, however
it too provides a type of adjusted p-value should at least approximate strong
control of the type I error in the FDR sense. SAM is perhaps being used
in practice more than all of the other methods described in the paper in
combination. It would be interesting to see how it compares with the other
methods on the data sets in the results sections. Unfortunately there are no
biological benchmarks for microarray data yet, not enough is known about
any biological system to know exactly which are the differentially expressed
genes. There are on the other hand empirical methods, simulations, which
can help validate approaches, to varying degrees. Such validation methods
however are not focussed on.

Which methods are being used by the end user community is mainly a
function of which of them have been implemented in the most user-friendly
fashion and give the least conservative results. SAM, for example, is an
Excel plug-in. SAM also often gives researchers results they find reasonably
satisfying, which usually are results substantially less conservative than
traditional experiment-wise p-values. About half of the focus of Ge et al.
is on the experiment-wise approach. The much more widely preferred and
less conservative False Discovery Rate approach is given the other half of
the attention, though the methods described to control it do not enjoy
particularly wide use yet, particularly the pFDR.

Much of the foundation for the theory in this paper is inspired by West-
fall and Young (1993). The less sophisticated reader might find it difficult
to translate the theory as outlined in the paper, into the framework as
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outlined in Westfall and Young. A parametric framework is required which
microarray gene-expression data do not naturally fit, the review assumes
instead the so-called non-parametric set-up, leaving all things unspecified
except for issues about the equality of means across groups.

The paper proposes a new method to compute permutation distribu-
tions using p-values themselves as statistics instead of t-statistics. To date
the t-statistic method has been how things have been implemented while the
p-value approach has been considered too computationally intensive. Over-
coming this is quite important because the t-statistic cannot be expected
to be distributed identically for all genes, and so should not be compared
directly across genes. The computational difficulty is outlined in Westfall
and Young, page 114, however the possibilities of a space-consuming rather
than time-consuming approach was not considered. Such an approach, re-
quiring probably less than 1 gigabyte for microarrays, is also fairly natural
and is not nearly as severe as the time-hit on today’s computers. Happily
the Ge et al. approach saves on both the time and space requirements, and
as far as I know this is the first actual implementation of the minP statistic
via re-sampling. This removes a very troublesome assumption, but is still
among the conservative experiment-wise p-value methods. Even though it
is a an experiment-wise approach which is not nearly as conservative as the
other standard experiment-wise methods, such as the Bonferroni, which is
very severe in the context of microarrays, it is still quite conservative, as
can be seen in the results the authors obtain with it in the results sections.

It is likely that experiment-wise methods will one day be extinct in lieu
of the much more popular FDR methods which allow mistakes while con-
trolling the number of them. Already in practice experiment-wise methods
are on the fringes. The low power of experiment-wise approach is reinforced
by the results they have outlined in the results section of the paper. The
minP method though a breakthrough in being the most theoretically satis-
fying, requires a greater number of permutations than the maxT method,
and in fact requires a greater number of replicates per condition than the
majority of groups are currently willing to perform, microarray data being
extremely time-consuming and expensive. In fact performing more repli-
cates sometimes introduces even more variability into the data as things like
date of hybridization and numbers of technicians have a greater effect. One
is tempted to opt for the maxT statistic because of its ability to function
with fewer replicates, however it is not clear what effect this might have
due to the violation of more assumptions. However given the new efficiency
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of calculation, the authors hint upon application of minP type methods to
the FDR approach. It’s clear this is exactly where this field is going.

Christina M. Kendziorski
Department of Biostatistics and Medical Informatics

University of Wisconsin, Madison, USA

A number of statistical approaches have been developed to address the
problem of identifying genes differentially regulated between two or among
multiple conditions. Most approaches generally involve construction of
some gene specific test statistic followed by identification of a rejection
region and assessment of error. It is clear that two types of errors can be
made at each gene; but the exact measure of error across multiple hypothe-
ses has been a subject of study historically and a subject of much debate
recently in the microarray literature. The authors provide a thorough and
much needed overview of a number of methods for controlling type I error
following multiple tests.

The relationship between the empirical Bayes approach and FDR is
mentioned, but deserves additional comment. It has been known for some
time that an empirical Bayes approach utilizing hierarchical models ac-
counts naturally for type I errors following multiple tests (Berry, 1988). By
naturally, I mean within the context of the empirical Bayes hierarchical
modeling framework where posterior probabilities, the quantities of inter-
est, depend on the number of tests and the entire set of realized data values.
This dependence itself provides some adjustment of the posterior probabil-
ities; additional adjustments are not always required. In fact, some simula-
tion studies of microarray data have shown that additional adjustments of
posterior probabilities derived within the context of a hierarchical model-
ing framework are not necessary to control the FDR. In Kendziorski et al.
(2003), a simulation study shows that FDR is reasonably small (< 0.05)
following rejection for posterior probabilities greater than 0.5 (this proce-
dure is the Bayes rule which minimizes the posterior expected count of
false positives and false negatives). Estimates obtained in the context of
the simulation study are consistent with those provided by the Efron et al.
(2000) empirical Bayes method. In addition to FDR, we also evaluated
our approach in the context of other measures of error and performance.
As expected, the utility depends on the sample size; and consideration of
measures in addition to FDR could prove useful in sample size calculations.
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Müller et al. (2003) consider FDR, false non-discovery rate (FNDR), and
sensitivity to determine optimal sample sizes for microarray studies.

Of course, the results of any simulation study depend on the method
used to simulate the data and it is for this reason that I point out a some-
what minor point mentioned by the authors that I strongly agree with:
it will be a while before we accumulate enough experience to know which
methods lead to more accurate biological conclusions. In the meantime,
better methods to simulate microarray data could be useful in assessing
methodologies and addressing a number of open questions.

John H. Maindonald
Centre for Bioinformation Science Mathematical Sciences Institute

and John Curtin School of Medical Research
Australian National University, Canberra, Australia

It is highly useful to have these various approaches for handling mul-
tiplicity documented and compared, in the one place. The contrast with
adjustments for multiplicity in more traditional statistical contexts is inter-
esting. With four or five treatments to compare in a one-way design, is an
adjustment for multiplicity really necessary? While many different forms
of adjustment have been proposed, few of these have found their way into
common use.

By contrast, there is a very short tradition of experience in the appli-
cation of methods for adjusting for multiplicity in this microarray context,
where the number of tests can be huge, and some form of adjustment for
multiplicity is clearly necessary. There are many methods on offer, with
more likely to appear in the next few years, and with a very limited tradi-
tion of experience in their application.

Misinterpretations of p-values and adjusted p-values are widespread,
some of them incorporated into output from widely used commercial mi-
croarray packages. A recent complaint to those responsible for the output
of one such package drew the response “that we attempt to strike a balance
between statistical correctness and accuracy, and making concepts clear
to non-statistical users”! I cringe at the possibilities for misinterpretation
that are offered by the bewildering variety of motivations and methodolo-
gies that are described in the present paper.

We must hope, as the authors suggest, that practical experience will



52 J. D. Storey

in due course decide between these and other methods that will present
themselves. This will take a long time to accumulate. While we accumulate
such experience, the technology will continue to change, placing in question
the usefulness of any except very recent experience.

Both for boostrap and for permutation methods, the distribution is a
poor estimator of the population distribution for small sample sizes. Is it
possible to build in parametric assumptions, perhaps assuming that the
distribution is normal except in the tails, that will reduce the problem of
loss of power relative to normal theory methods?

It would be interesting to do the same comparisons under conditions
where the discreteness of the permutation distributions is more of an issue,
for example with four or six mice per treatment. Also, why not use the
permutation distribution to calibrate p-values that are derived from normal
theory assumptions, interpolating between the discrete probabilities from
the permutation distribution?.

Variation in the denominators of the sample t-statistics, and in the t-
statistics themselves, will be more extreme than variation in the “true”
unknown variances. Better ways than at present available are needed to
use information on the distribution of variances across different genes to
improve the crude variance estimates. A complication is that these vari-
ances can be, and in these data are, a function of hybridization intensity, of
specific print-tip effects, and of order of printing effects. While most of the
methods do not change the rank order of the genes (the sequential meth-
ods may change the order), changing the variance estimator will change the
ranking.

John D. Storey
Department of Statistics

University of California, Berkeley, USA

Yongchao Ge, Sandrine Dudoit, and Terry Speed have written a lucid
article on multiple testing in the context of DNA microarray studies. I
have greatly benefitted from the interaction I have had with them, and
it has greatly influenced my work in this area. Their presentation of the
issues is thoughtful and careful, both in this article and in their previous
work (Dudoit et al. (2002b)). This particular article will undoubtedly serve
as a standard reference for those wanting to become acquainted with the
research area.
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Ge, Dudoit, and Speed (henceforth abbreviated by GDS), discuss both
FWER and FDR. It seems that most microarray experiments will involve
conditions where a reasonable fraction of the genes are differentially ex-
pressed. In such cases, the FDR is likely the more appropriate quantity.
(Of course, one can create examples where FWER would be more appli-
cable.) Therefore, my comments will be limited to false discovery rates
and consist of four points. First, I will show that many of the different
approaches to FDR they have presented do in fact become equivalent if
one views p-value calculations from a “pooling” point of view. Second,
I will review some recent results I have completed with Jonathan Taylor
and David Siegmund that directly address some of the concerns they raise.
Third, I will discuss where I think dependence is an issue in DNA microar-
ray experiments, where it is not an issue, and how this relates to some
of the methods they discuss. Fourth, I will argue that q-values provide a
good gene-specific measure of significance as long as one considers them
simultaneously in the appropriate way.

Connections Between Procedures

Suppose that m hypothesis tests are simultaneously tested with corre-
sponding p-values p1, p2, . . . , pm. Benjamini and Hochberg (1995) pro-
pose the following algorithm for controlling the FDR at level α. Let
TBH = max{pi : pi ≤ i

mα}. Then reject all null hypothesis correspond-
ing to pi ≤ TBH . When the null p-values are independent and uniformly
distributed, this procedure strongly controls the FDR at level α. In Storey
(2002a), I suggest the following estimate of FDR for a fixed p-value thresh-
old t:

F̂DRλ(t) =
π̂0(λ) · t

1
m

∑m
i=1 I(pi ≤ t)

, (1)

where π̂0(λ) is an estimate of π0, the proportion of true null hypotheses,
with tuning parameter 0 ≤ λ < 1. The form of π̂0(λ) is

π̂0(λ) =
∑m

i=1 I(pi > λ)
m(1− λ)

. (2)

It is shown in Storey (2002a) under an i.i.d. mixture model that
E[F̂DRλ(t)] ≥ FDR(t), where FDR(t) is the false discovery rate attained
when thresholding the p-values for significance at t. This inequality holds
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when the null p-values are independent and uniformly distributed (Storey
et al. (2002)), the same conditions as in Benjamini and Hochberg (1995).

Even though the above form of “strong control” is from the opposite
viewpoint of Benjamini and Hochberg (1995), it is tempting to form the
threshold

Tλ = max{t : F̂DRλ(t) ≤ α} (3)

in order to provide strong control of the FDR. It follows that π̂0(λ = 0) = 1
so that F̂DRλ=0(t) = mt/

∑m
i=1 I(pi ≤ t). From this, it easily follows that

TBH = Tλ=0. Therefore, if one takes certain liberties with the procedure
proposed in Storey (2002a), it can be viewed as a generalization of the
BH procedure. In fact, we have shown in Storey et al. (2002) that Tλ

strongly controls the FDR at level α (again under the same conditions as
in Benjamini and Hochberg (1995)), under the constraint that Tλ ≤ λ. The
fact that the threshold occurs ≤ λ is a bit of a nuisance, but makes little
difference in practice for wisely chosen λ. This constraint is unnecessary
for large m, which I discuss later.

There has been much confusion in the literature recently over the dif-
ferences between controlling the FDR via p-values or through permuta-
tion methods. In fact, GDS quickly dismiss the FDR method used in
SAM (Tusher et al. (2001)) as being unconventional and not even worth
discussing. For the case of detecting differential gene expression between
two conditions, Tusher et al. (2001) define an asymmetric, data-dependent
thresholding rule for significance, based on modified t-statistics and a quantile-
quantile plot. The thresholding rule is indexed by 0 ≤ ∆ < ∞, where the
larger ∆ is, the fewer the number of significant genes there are. For a
fixed ∆, Tusher et al. (2001) estimate the FDR by E[V ∗(∆)]/R(∆), where
R(∆) is the number of significant genes at this threshold. E[V ∗(∆)] is the
average number of genes called significant under the permutation distribu-
tion obtained by scrambling the group labels, using the same asymmetric
thresholding rule.

The following result shows that this method is in fact equivalent to
the Benjamini and Hochberg (1995) method in the sense described above,
as long as one calculates p-values by pooling across genes. Let ∆̃i be the
largest ∆ so that gene i is called significant, for i = 1, 2, . . . ,m. Then
the p-value of gene i, when pooling across genes (i.e., assuming their null
distributions are the same), is pi = E[V ∗(∆̃i)]/m. This easily follows by
the definition given in Lehmann (1986) and by considering the nested set
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of significance regions indexed by ∆.

Theorem 1. Let pi = E[V ∗(∆̃i)]/m, E[V ∗(∆)], and R(∆) be defined as
above. Then the BH algorithm applied to p1, p2, . . . , pm is equivalent to
calling all genes significant by ∆̂ in SAM where

∆̂ = min
{

∆ :
E[V ∗(∆)]

R(∆)
≤ α

}
.

Therefore, one can use the SAM software in the above way to perform
the BH method. We indirectly state this fact in Storey and Tibshirani
(2001), but we do not explain it as thoroughly. Given this equivalence, I
think that GDS have overlooked one potentially greater drawback of SAM.
The rule defined by the quantile-quantile plot and ∆ is determined from
the same set of data on which the FDR estimates are made. It is clear that
this can result in “over-fitting” and anti-conservative biases in FDR calcu-
lations. As an extreme example, suppose that we apply SAM to detecting
differential gene expression in a single gene. It then uses right-sided or
left-sided significance regions, depending on whether the observed statistic
is respectively positive or negative. It is not hard to show that this results
in a p-value that is 1/2 of its actual size, and therefore the FDR estimates
will be two times too small. As the number of genes increases, this bias
decreases, but it is always present for the most significant genes.

By noting that any use of averaging over the number of statistics called
significant under some simulated null distribution is equivalent to calculat-
ing p-values by pooling across genes (or tests), it can be seen that many
of the re-sampling based FDR methods are simply p-value based methods
with globally defined p-values. Moreover, because the expectation of the
sum of indicator random variables is the same regardless of the dependence
present between them, it is difficult to see how the re-sampling approach
captures dependence in the FDR case. Because of this, I am slightly skep-
tical about how useful and novel the current re-sampling approaches are in
false discovery rates (Of course the scenario is quite different for FWER
where one is concerned with Pr(V ≥ 1) (Westfall and Young, 1993)). The
“Storey” and “ST” methods employed in GDS would have been completely
equivalent if they had pooled across genes to form p-values. GDS argue
that there is no reason to suspect that each gene has the same null distri-
bution. Perhaps this is true, but their argument for “subset pivotality” also
requires assumptions. Both sets of assumptions can be met with arguments
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based on a large number of arrays. Finally, note that it takes B permuta-
tions when calculating p-values across genes to get the same resolution as
mB permutations when calculating p-values within genes. Recall that m
is usually on the order of 3000 to 30,000.

Next, I review several very recent results that do not depend on an
independence assumption, nor on the assumption that each gene has the
same null or alternative distributions.

Recent Results with Applicability to DNA Microarrays

For a large number of genes m, several results about F̂DRλ(t) and Tλ

(see equations 1-3) have been shown that increase their applicability. Note

that V (t)/m0 = #{null Pi≤t}
m0

and S(t)/m1 = #{alt. Pi≤t}
m1

are the empirical
distribution functions of the null and alternative p-values, respectively. Al-
most sure convergence in the point-wise sense as m →∞ means that with
probability 1:

V (t)
m0

→ G0(t) for each t ∈ [0, 1],

S(t)
m1

→ G1(t) for each t ∈ [0, 1], (4)

for some functions G0 and G1. The following results are proven in Storey
et al. (2002). These are closely related to several results in Genovese and
Wasserman (2001).

Theorem 2 (Storey et al. 2002) Suppose that V (t)/m0 = #{null Pi≤t}
m0

and

S(t)/m1 = #{alt. Pi≤t}
m1

converge almost surely point-wise to continuous G0

and G1, respectively, where G0(t) ≤ t. Also suppose that limm→∞m0/m =
π0 exists. Then for each δ > 0,

lim
m→∞ inf

t≥δ

[
F̂DRλ(t)− FDR(t)

]
≥ 0 (5)

with probability 1. Also,

lim
m→∞FDR(T0) ≤ lim

m→∞FDR(Tλ) ≤ α. (6)

Therefore, the estimate F̂DRλ(t) simultaneously dominates FDR(t)
over all thresholds t for large m. Also, the generalized thresholding proce-
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dure Tλ asymptotically controls the FDR at level α. We have
limm→∞ FDR(T0) < limm→∞ FDR(Tλ) for λ > 0, when G0 and G1 are
strictly monotone. Under these conditions, the generalized procedure is
more powerful than the BH procedure (T0 = TBH).

Estimates of the q-values for each pi were given in Storey (2002a). We
have also shown that under these conditions the q-values are simultaneously
conservatively consistent. Therefore, for large m, one can examine all genes
and their q-values simultaneously without inducing bias. This is explicitly
stated in the following result.

Corollary 1 (Storey et al. 2002) For a given p-value pi, let q̂λ(pi) be its
estimated q-value as defined in Storey (2002a). Then under the conditions
of Theorem 8.3,

lim
m→∞ inf

t≥δ
[q̂λ(t)− q-value(t)] ≥ 0

for each δ > 0.

These asymptotic results hold under the point-wise convergence of the
empirical distribution functions. Note that we did not require each test to
have the same null distribution, but rather the null distributions have to
converge to some function. Many forms of weak dependence allow point-
wise convergence of empirical distribution functions, for example ergodic
dependence, blocks of dependent tests, and certain mixing distributions.
This is a useful fact for certain applications, for example, when dealing
with the dependence encountered in DNA microarrays.

Dependence in DNA Microarrays

I hypothesize that the most likely form of dependence between the genes
encountered in DNA microarrays is weak dependence, and more specifically,
“clumpy dependence”; that is, the measurements on the genes are depen-
dent in small groups, each group being independent of the others. There
are two reasons that make clumpy dependence likely. The first is that genes
tend to work in pathways, that is, small groups of genes interact to produce
some overall process. This can involve just a few to 50 or more genes. This
would lead to a clumpy dependence in the pathway-specific noise in the
data. The second reason is that there tends to be cross-hybridization in
DNA microarrays. In other words, the signals between two genes can cross
because of molecular similarity at the sequence level. Cross-hybridization
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would only occur in small groups, and each group would be independent
of the others. Typically microarrays measure the expression levels on 3000
to 30,000 genes, and each gene makes up a p-value. Therefore, given the
clumpy dependence and large number of genes, I expect Theorem 2 and
Corollary 1 to be relevant for the problem of detecting differential gene
expression.

Many assumptions that have been made for modeling microarray data
have yet to be verified. Hopefully evidence either for or against these as-
sumptions will emerge. I have given a plausibility argument for the as-
sumptions in Theorem 8.3 and Corollary 1. I have also provided numerical
evidence in Storey et al. (2002) and Storey (2002b). GDS have stressed the
dependence between the genes, not only in this article but in Dudoit et al.
(2002b) as well. I leave it as a challenge to them to provide evidence from
real microarray data that the aforementioned assumptions do not hold. I
have not been able to find it myself. Keep in mind that one can cluster
microarray data and see that many genes are in fact related, but this is
very different than stochastic dependence, especially the type that would
violate the assumptions I have argued are true.

Q-values Give Gene-specific Significance ... from a Global
View

Given these results and arguments, I would like to suggest a useful way to
use the information among all q-values. Since we can essentially consider
all estimated q-values simultaneously, one can make various plots in order
to find a useful q-value cut-off. The estimated q-values also give a gene-
specific measures of significance. In Efron et al. (2001), we approached the
problem of detecting differential gene expression from a Bayesian frame-
work, where the posterior probability that a gene is not differentially ex-
pressed conditional on its observed statistic can be calculated. We called
this quantity a “local false discovery rate” in the sense that it gives pro-
portion of false positives among genes in a small neighborhood around the
observed gene. We also used the main result from Storey (2001) to re-
late these posterior probabilities to the pFDR. This posterior probability
is also a gene-specific measure of significance. Therefore, in a sense the
qs-value and the traditional posterior probability are natural competitors
for gene-specific measures of significance.
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Figure 1: A plot of the q-value cut-off versus the percent of data called significant

with this cut-off when (a) π1 = 0.4, µ = 1 and (b) π1 = 0.1, µ = 6.

Suppose we observe independent statistics Z1, Z2, . . . , Zm, distributed
as a null N(0, 1) with probability π0 and an alternative N(µ, 1) with prob-
ability π1 = 1 − π0. Also suppose that we use a right-sided significance
rule. Suppose π1 = 0.4, µ = 1, and we observe zi = 2. Then its lo-
cal false discovery rate is Pr(Hi = 0|Zi = 2) = 0.25 and its q-value is
Pr(Hi = 0|Zi ≥ 2) = 0.18. Now if we consider π1 = 0.1 and µ = 6 with
the same observed statistic zi = 2, we get a local false discovery rate of
Pr(Hi = 0|Zi = 2) = 0.9997 and q-value of Pr(Hi = 0|Zi ≥ 2) = 0.17.
Therefore, by changing two important parameters we end up with totally
different local false discovery rates, but very similar q-values. Clearly, we
would not want to call zi = 2 significant in the latter case, but perhaps it
is reasonable to in the former case.

With this limited information, it appears that the q-value is not a very
good gene-specific measure of significance. Is this a fair assessment? In
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the context of looking at a single gene in the marginal sense, then this is
a fair assessment. But in the context of the global problem of detecting
differentially expressed genes, then this is absolutely not a fair assessment.
It also appears to be useful to consider both the q-value and the posterior
probability at the same time, but this is both difficult and it requires one
to adopt the Bayesian framework.

We show a global use of the q-values does not require one to incorporate
these Bayesian quantities. Consider Figure 1 where the percentage of statis-
tics rejected has been plotted versus its corresponding q-value cut-off for
both of the above scenarios. The π1 values are denoted in each plot. From
these plots, one can see the local information contained in the q-values is
quite different in the two scenarios. Specifically, it can be seen in panel b
that a q-value cut-off of 0.17 is completely unreasonable, whereas in panel a
this is not as clear. In panel b, one can see that the q-value is virtually zero
when 10% of the data have been rejected panel b. This information used in
conjunction with that fact that π1 = 10% makes it immediately clear that
about 10% of the data being rejected is most reasonable. From panel a,
this is not the case. Therefore, by considering all q-values simultaneously
as well as π1 in the spirit of Figure 1, one can see which cut-offs make sense.
We can do this without being Bayesian and without introducing a totally
new quantity.

In the methodology of Storey (2002a), one can obtain estimates of π1.
By generating only 3000 observations from each of these cases, I estimate
π̂1 = 0.36 when π1 = 0.4 and µ = 1. When π1 = 0.1 and µ = 6, I estimate
π̂1 = 0.10. The q-value plots are also very similar to the idealized versions
in Figure 1. Therefore, it is not clear that the posterior probability (i.e.,
local false discovery rate) is always necessary.

Peter H. Westfall
Texas Tech University
Lubbock, Texas, USA

The Influence of John Tukey

Among his many other notable contributions to statistics, the late John
Tukey also deserves credit for some of the ideas behind this article of Ge,
Dudoit and Speed (hereafter GDS). In the late 1980’s, several pharmaceu-
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tical companies including Merck & Co. supported my development of the
software that was eventually to become the SAS/STAT procedure PROC
MULTTEST. It was at the urging of the Merck statisticians, partly be-
cause of their consultations with John Tukey, that the permutation-based
”MinP” method was developed and incorporated.

The MinP and MaxT methods are FWER-controlling procedures. In
the 1990’s, Tukey strongly supported FDR-based methods, and he deserves
some credit for this line of research as well.

While it would be ludicrous to compare myself to Tukey, I must confess
that I, like he, have gravitated somewhat toward FDR-based methods in
these golden years of my life (my 40s). Nevertheless, I will confine my
comments to aspects of the FWER-controlling MinP and MaxT procedures,
and hope that others will provide comments on the FDR and Bayesian
methods.

History of PROC MULTTEST

Since the “R” software mentioned by GDS also goes by the name
“MULTTEST” some brief comments concerning the origin the name seem
to be in order. Originally, the procedure was to be applied to multivariate
binary data only, and the procedure was dubbed “PROC MBIN” (West-
fall et al., 1989). Then, in later updates, we realized that the methods
were easily adaptable to continuous responses, and changed the name to
“PROC MTEST” (Westfall et al., 1990). The ultimate goal of the pharma-
ceutical companies who supported the software development was for it to
become a SAS-supported package, since SAS is so heavily used in pharma-
ceutical and regulatory environments. SAS adopted the procedure in 1992;
however, the name “MTEST” was already in use, and we chose the name
“PROC MULTTEST” instead.

GDS’s MinP Method for Continuous Response

At the urging of statisticians Joseph Heyse, Keith Soper and Dror Rom
at Merck in the 1980’s, the permutation-based MinP approach described
by GDS was made an integral part of PROC MULTTEST since its incep-
tion, but only for binary response data. The distributions of the marginal
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(raw) p-values are calculated analytically from hypergeometric, multivari-
ate hypergeometric, or analytically convolved multivariate hypergeometric
distributions, depending upon the application, and these distributions are
stored in tables, one for each variable. There is no need for “double per-
mutation” in these cases, as the p-values for each permuted data set are
computed via table look-ups. However, in cases where the binary totals are
large, the evaluation of all configurations can be too time-consuming; in
such cases continuity-corrected normal approximations are used and per-
form very well.

With continuous data, the permutation distributions do not collapse
nicely to hypergeometric types, so the marginal distributions cannot be tab-
ulated simply; we therefore encoded the MaxT method in
PROC MULTTEST for this case. GDS are to be congratulated provid-
ing an excellent algorithm for the simultaneous evaluation of marginal and
joint probabilities, the MinP method. As they indicate, there are many
possible extensions, notably to bootstrap multiple testing, which can offer
greater flexibility than the permutation-based methods.

Pesarin (2001, pp. 143–147) develops a similar “one-pass” permutation
algorithm; however, he does not consider the computational improvements
of GDS involving storage and sorting, both of which are very important for
gene expression data where m is large.

Closure, Strong Control, and Exact Control

GDS point out differences in strong vs. exact control; the closure principle
of Marcus et al. (1976) unifies these concepts. Using closure, one rejects a
single hypothesis Hi at the FWER=α level if HM0 is rejected for all M0

⊇ {i}, M0 ⊆M; each HM0 must be tested using a method that has “exact
control” at the unadjusted α level to ensure strong FWER control for the
individual hypotheses Hi. While closure generally requires evaluation of
the 2m − 1 “exact” tests, there are enormous simplifications for MaxT-
and MinP-based tests when subset pivotality holds. In the case of MinP-
based tests, we have P (mini∈M0 Pi ≤ x|M0) = P (mini∈M0 Pi ≤ x|M) ≤
P (mini∈M1 Pi ≤ x|M) =P (mini∈M1 Pi ≤ x|M1) when M0 ⊆ M1. Thus,
significance of a test of HM1 , where mini∈M1 = p1, also implies significance
of all tests of HM0for which M0 ⊆ M1 and mini∈M0 = p1. This fact
implies that only m tests (those involving the ordered p-values) are needed
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for the closed testing procedure, rather than 2m − 1 tests. The closed
testing procedure using MinP reduces to the step-down method described
by GDS, and strong control of FWER follows. Similar arguments apply for
the MaxT method and the ordered |ti|-values.

Appeal to closure helps to answer some puzzling questions about the
methodology:

• Why does MaxT control the FWER when inexact marginal tests are
used?

• What happens if marginal distributions are identical but joint distri-
butions are not?

The answer to the first question is simple. As long as each test of
HM0 in the closure is exact, the procedure controls the FWER strongly. In
the MaxT method, tests of HM0use the permutation distribution of the
statistic maxi∈M0 |Ti| and are therefore exact permutation tests (Puri and
Sen, 1971, pp. 66-70), provided that HM0 refers to identical joint distri-
butions. Since closure allows us to focus on individual tests of composite
hypotheses, which are more widely studied and more readily understood
than multiple testing procedures, the second question can be answered by
studying composite tests, and conditions under which they are exact. To
answer it, we must first answer the question, “What is the null hypothesis
HM0”? In GDS, the definition given is HM0 = ∩i∈M0{Hi = 0}, where
{Hi = 0} could be interpreted to mean that the marginal distributions of
Xi are identical for all levels of the covariate Y . While this is a precise defi-
nition of {Hi = 0}, the definition HM0 = ∩i∈M0{Hi = 0} is imprecise since
the joint distributions are not mentioned. Two possible definitions consis-
tent with this statement are (a) the |M0|-dimensional joint distributions
of {Xi; i ∈ M0} are identical for all levels of the covariate Y , or (b) the
marginal distributions of the Xi are identical for all levels of the covariate
Y , all i ∈ M0, but the joint distributions of {Xi; i ∈ M0} are otherwise
arbitrary for the various levels of Y . Under definition (a), the MinP and
MaxT methods strongly control the FWER as mentioned above. However,
under definition (b), the level of the test is the supremum of the probability
of rejection over all multivariate distributions satisfying the marginal con-
straints, and in this situation the permutation test of HM0 can yield excess
type I errors. The problem is usually minor, but one may consider the
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extreme case of two-sample data, where all gene expression measurements
are standard normal (hence all nulls are true), but the measurements in
group 1 are perfectly correlated, while the measurements in group 2 are
independent. Excessive type I errors occur when the sample size in group
1 is large and that of group 2 is small, in the reverse case of imbalance the
test is too conservative, and in the balanced case the test is almost exact.

Thus, strictly speaking, HM0 must be defined as in (a) above to allow
determination of affected genes with strong FWER control, using either
MinPor MaxT, with permutation tests. The problem and its consequences
are similar to the problem of heteroscedasticity in the two-sample univariate
analysis: the maximum type I error rate of the two-sample t test is greater
than α under heteroscedasticity, particularly with great imbalance. Further
study is needed to assess both the extent and relevance of this problem for
gene expression data, both in the case of FWER control and FDR control.
This problem is a limitation of multiple permutation tests; an approximate
solution is to use separate-sample bootstrap multiplicity adjustments; see
Westfall and Young (1993, pp. 88–91) for the univariate case, and Pollard
and van der Laan (2003) for the multivariate case with application to gene
expression data.

Weighting and Serendipity

It is curious that the MaxT approach, with its apparent inconsistency of
using inexact marginal tests in conjunction with exact joint tests, seems
to work better than the MinP method in many cases. This phenomenon
may be understood in terms of implicit weighting of the tests caused by
different distributions. For a test to be significant using the single-step
MinP method, we require pi ≤ cα, where cα is the α quantile of the MinP
distribution.

Using permutational p-values, the distributions of the pi are close to uni-
form (with differences due to discreteness) under {Hi = 0}, thus P (Pi ≤
cα|Hi = 0) ≈ cα, for all i. Typically cα ≈ α/m for FWER-controlling meth-
ods, and it may be difficult or sometimes impossible for the permutation
distribution to achieve such a low critical point for large m.

In contrast, for a test to be significant using the single-step MaxTmethod,
we require |ti| ≥ dα, where dα is the 1−α quantile of the null MaxT distri-



Resampling-based Multiple Testing for Microarray Data Analysis 65

bution. In this case there is an imbalance that allows some hypotheses to
be tested at higher marginal levels, thus giving possible significances with
MaxT that are impossible with MinP. The marginal significance level for
Hi, P (|Ti| ≥ dα |Hi = 0), may vary greatly from test to test, depending
upon the distribution of the data Xi.

For example, suppose X1 is double exponential and X2 is uniform, in-
dependent of X1, with samples of 5 bivariate observations in each of two
groups. The 95% percentile of the distribution of max{|T1|, |T2|} is (via
massive simulation) dα = 2.63, and (also by simulation) P (|T1| ≥ 2.63) =
0.0157 and P (|T2| ≥ 2.63) = 0.0348.

The MaxT method thus appears to “reward” distributions that are less
outlier-prone. Whether this is a desired emphasis or not, the biologists may
decide. To me it seems useful to give more weight to genes that consistently
replicate, with no outliers. Of course, outliers themselves should be flagged
to evaluate reliability of the experiment, and to identify unexpected gene
activity, but these issues are separate from the problem at hand.

Something similar occurs when using the MinP method with binary
response variables. Westfall and Wolfinger (1997) note that, when using the
MinP method, variables with small marginal success rates are automatically
discarded, thereby allowing higher power for variables with larger rates.

Again there is serendipity: if a variable is observed to have only 1
success across both treatment groups, it seems pointless to bother testing
it, so why should it contribute to multiplicity adjustment?

While it is lucky that the MaxT method (and MinP for binary data) pro-
vide reasonable differential weightings, it is often desired to provide a more
directed analysis, using a priori weightings (Westfall et al., 1998; Westfall
and Soper, 2001) or weightings based on ancillary statistics (Westfall et al.,
2003).

My final comment about balance concerns the use of |ti| as a test statis-
tic. In cases where the distribution of Ti is skewed, the |ti|-based test will
reject more often in one of the tails. The logic that suggests balance across
variables also suggests balance within a variable. It may be possible to use
the methods of GDS with p-values pi = 2 min{P (Ti ≥ ti |Hi = 0), P (Ti ≤
ti |Hi = 0)} for better balance.
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Rejoinder by Y. Ge, S. Dudoit and T. P. Speed

We are grateful to all the contributors for their stimulating and in-
sightful comments. Together they make a substantial contribution to our
understanding of algorithms for step-down minP adjustment, and more gen-
erally to the practice of multiple testing in microarray data analysis. We
have arranged our response by topic rather than discussant, in the hope of
concentrating on the common themes. Before doing so we remark that we
did not attempt in our paper to give a comprehensive review of multiple
testing in microarray data analysis. Rather, we focussed on those areas in
which resampling played a central role. We apologize for not mentioning
much important work in the wider field, some of which has come up in the
discussion.

Family-wise error rates

We thank Dr. Westfall for his valuable summary of the history of multiple
testing, especially for his outline of John W. Tukey’s influence, which nicely
complements the recent paper (Benjamini and Braun (2002)). We found his
comments on the development of the SAS procedure PROC MULTTEST
very interesting, as we did his mention of the fast algorithm for minP
adjustment in the binary case. Note that our fast algorithm can also be
used in binary case, and could be useful when the binary totals are large.
Dr. Grant discussed a natural approach to implementing the algorithm in
Box 3 without using double permutations, and Dr. Westfall also mentioned
the “one pass” permutation algorithm developed by Pesarin (2001). As we
indicated in Section 4.4 of our paper, analogous reasoning led independently
to our new fast algorithm. We simply went a little further, speeding up the
running time and reducing the storage space. Dr. Westfall explains clearly
why maxT has a somewhat better performance than minP, and why it
still controls FWER in the strong sense. He describes how maxT gives an
“implicit weighting” to different genes, and this leads us to observe that in
situations where a priori weighting is desirable, the algorithm of Box 4 can
be easily modified to apply.
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False discovery rates

We appreciate Dr. Storey’s response to the point raised by Dr. Glonek and
Dr. Solomon concerning the usefulness of q-values. FDR or pFDR need to
be considered in the global sense, as these measures focus on the overall
error rate, not on particular hypotheses. Indeed Finner and Roters (2001)
discuss “cheating” with FDR. For example, if one wishes to reject a particu-
lar hypothesis, say H1, one can take that hypothesis together with 99 other
hypotheses which will be rejected with probability one, say H2, · · · ,H100.
The FDR for rejecting the family of 100 hypotheses is no greater than 1%,
independent of the value of the test statistic for H1. In this contrived ex-
ample, the 1% FDR applies to all 100 hypotheses (in the global sense),
and says nothing about the hypothesis H1. One practical consequence of
this observation is that in real analyses, researchers should only include
in multiple testing procedures genes whose differential expression status is
unknown.

SAM, pooling, estimation, and strong control

Dr. Storey describes a nice connection between the BH and SAM proce-
dures when computing raw p-values by pi = E[V ∗(∆̃i)]/m. This prompts
us to make a few comments about his contribution, especially as it seems
that we dealt with SAM too briefly. Firstly, we feel that the assump-
tion of every gene having the same null distribution needs more careful
scrutiny. To be sure, pooling will give higher resolution than comput-
ing p-values within genes, but is it justifiable? Pollard and van der Laan
(2002) have shown evidence that the null t-statistics from different genes
can have different distributions, and in our own experience, the assump-
tion of identical distributions for every gene has been problematic. In Dr.
Storey’s view, “subset pivotality” requires the same null distribution of
each gene, but we disagree. “Subset pivotality” says that joint distribu-
tion (Ti1 , · · · , Tik) | (Hi1 , · · · , Hik) is identical with the joint distribution
(Ti1 , · · · , Tik) | HM for any subset {i1, · · · , ik} ⊆ M. If each Ti or Pi is
computed within gene i, then surely subset pivotality holds. It is not some-
thing that depends on the data. The Ti may have different distributions
and may be correlated. For example, correlated Ti can be found in example
2.1 on page 43 in Westfall and Young (1993). Using the argument in that
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example, we can also show that subset pivotality can hold for Ti having
different marginal distributions. A different concern with pooling is that it
may disrupt subset pivotality, and hence our ability to demonstrate strong
control. A related point is that the BH procedure is currently guaranteed
to deliver strong control only under the assumption that the null p-values
are independent, or that they satisfy a positive regression dependency con-
dition. These assumptions may not be valid after pooling, as the p-values
will no longer depend solely on data on the individual genes. The reasons
for our concerns here should now be evident: we prefer to make assump-
tions about the data which are clearly reasonable ones, and we want to
retain the ability to demonstrate strong validity so that any p-values can
be taken seriously. Let us elaborate a little.

For us there are usually two steps in deriving a multiple testing pro-
cedure: first, use some heuristics, most of which come from estimation, to
find a rejection procedure, and second, demonstrate strong control. For
example, the BH procedure can perhaps be best explained using Seeger
(1968) as motivation. His idea was to find genes for which (in the notation
of Section 5.2) V (pi)/R(pi) ≤ α. When mpi is used to estimate V (pi), we
are led directly to the BH procedure. Historically, neither Simes (1986) nor
Benjamini and Hochberg (1995) gave this kind of motivation. However,
Benjamini and Hochberg’s elegant proof of strong control FDR greatly ac-
celerated the spread of the FDR concept. The SAM procedure involves
estimation based on heuristics derived from the definition of FDR. But
SAM computes its p-values after pooling across genes, which may modify
the dependence structure among the null genes, and so SAM can be very
different from the BH procedure, which is why we think its strong control
of FDR still needs to be demonstrated, despite its close connection with
BH.

In Section 3 of his comments, Dr. Storey presents some asymptotic
results. However, it remains necessary for him to demonstrate strong con-
trol of the FDR there, i.e., to show that for any given α, rejecting the
FDR-adjusted p-values no greater than α will lead to

sup
M0⊆M

E

∑
i∈M0

I(p̃i ≤ α)∑
i∈M I(p̃i ≤ α)

≤ α. (1)

Westfall & Young’s step-down minP and maxT have been proved to
deliver strong control in this sense for FWER. Dr. Storey and colleagues
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have also demonstrated this kind of control of FDR when the null p-values
are independent, see Storey et al. (2002). In that paper they also prove
asymptotic control of FDR when V (t)/m0 = #{i ∈ M0 : Pi ≤ t}/m0

and S(t)/m1 = #{i ∈ M1 : Pi ≤ t}/m1 converge almost surely to G0(t)
and G1(t) respectively, and limm→∞m0/m = π0 exists. These conditions
don’t require the assumption that each gene has the same null or alternative
distributions, but they do require that V (t)/m0 and S(t)/m1 should behave
as if each gene has the same null (G0) or alternative distribution (G1).
When these assumptions are valid, their asymptotic control of FDR can be
written

lim
m→∞E

∑
i∈M0

I(p̃i ≤ α)∑
i∈M I(p̃i ≤ α)

≤ α when m0/m → π0. (2)

This result may not mean strong control of FDR in the sense of equation (1)
where we need to compute the maximum of FDR for all possible choices
of m0 or M0 in equation (2) before taking the limit. It would also be
good to prove strong control of FDR here for dependent data. Again, if
p-values are computed by pooling, then strong control may be still an issue
as pooling may destroy their assumptions. For example, if the genes have
a block independence structure and we are using two sample t-statistics,
then pooling will remove the block-independence of the computed p-values,
as every pi will now involve the permuted distribution of all test statistics
T1, · · · , Tm. Dr. Storey reminds us that the expectation of the sum of
indicator variables stays the same, even the data are dependent, which is
of course true, but the variance of that sum can be different under different
dependence structures. That is the reason why we computed the individual
p-values within genes for the Storey procedure. Despite all of the foregoing,
we see all of the procedures discussed, including SAM, as having value, and
also we will gain more confidence in their use from simulation results.

Test statistics, resampling and empirical Bayes

The two sample t-statistic is the most commonly used statistic for compar-
ing the treatments and controls, and we used the simple |ti|-based rejection
rule. However, this may not be the best statistic for identifying differentially
expressed genes: improvements may be possible. Dr. Westfall mentioned
using balanced one-sided tests, computing pi = 2 · min(Pr(Ti ≥ ti | Hi =
0), Pr(Ti ≤ ti | Hi = 0)). Mr. Maindonald suggested improving the crude
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variance estimates of two sample t-statistic. In our view the test statistic
needs to be carefully chosen, and we leave deciding the best one to future
research. The same applies for the resampling strategy. We adopted the
most commonly used one, namely, permutations. Other resampling strate-
gies are possible, for example, the bootstrap. As long as the test statistics
are computed and the resampling performed within genes, the algorithms
in our paper should apply.

We thank Dr. Kendziorski’s for her comments on the empirical Bayes
approach. This approach is definitely a useful tool for identifying differ-
entially expressed genes with microarray data. We look forward to theory
demonstrating her feeling that a measure of control of FDR is automati-
cally obtained using posterior probabilities. It will be good if it is true.

Dr. Glonek, Dr. Solomon, Mr. Maindonald, Dr. Grant, and many
others are concerned that the FWER approach lacks power if the number
of samples (microarrays) is limited, especially when adjustments are based
on resampling. Also, the resampling-based approach may become more
sophisticated and computationally intensive when the experimental design
is more complicated than the simple replicated treatment and control used
in this paper. In these cases, it does seem that some modeling of the data
will be required to answer the questions of interest, possibly empirical Bayes
modeling. If the number of permutations is quite limited, for example, when
only three or four slides are available, a parametric form of resampling could
be applied. Alternatively, graphical methods such as the use of normal qq-
plots may be used to identify the genes of interest. We do feel, however,
that it is probably unreasonable to expect essentially model-free p-value
adjustments providing strong control in such situations.

New directions in multiple testing

We predict that FDR or one of its variants will come to enjoy wide applica-
tion in microarray data analysis, for these procedures provide a good bal-
ance between the raw p-values and the stringent FWER adjusted p-values.
The family-wise (also called experiment-wise) error rate is probably not
very useful when a good proportion of the genes are expected to be differ-
entially expressed, especially when testing many thousands of genes in an



Resampling-based Multiple Testing for Microarray Data Analysis 71

exploratory analysis. FWER may be more useful in confirmatory analy-
ses, when enough replicates are available. A potentially useful variant of
FWER comes from allowing some number, say k falsely rejected hypothe-
ses. Then we can attempt to control Pr(V > k), noting that when k = 0,
this is equivalent to FWER. Korn et al. (2001) have begun work in this
direction, and it seems promising. They also use the concept of false dis-
covery proportion (FDP), this being defined as V/R, the observed FDR.
The control of FDP is pleasing as it gives a procedure such that given one
γ, say 0.1, Pr(V/R > γ) ≤ α. In some ways this might be a better criterion
than FDR, as FDR considers the overall expectation, not simply what is
happening in the data we have. FDP relates directly to the information in
the observed data, which is our primary interest.
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