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Parameter estimation for the calibration and
variance stabilization of microarray data

Wolfgang Huber, Anja von Heydebreck, Holger Sueltmann, Annemarie
Poustka, and Martin Vingron

Abstract

We derive and validate an estimator for the parameters of a transformation for the
joint calibration (normalization) and variance stabilization of microarray intensity data.
With this, the variances of the transformed intensities become approximately indepen-
dent of their expected values. The transformation is similar to the logarithm in the high
intensity range, but has a smaller slope for intensities close to zero. Applications have
shown better sensitivity and specificity for the detection of differentially expressed genes.
In this paper, we describe the theoretical aspects of the method. We incorporate calibra-
tion and variance-mean dependence into a statistical model and use a robust variant of
the maximum-likelihood method to estimate the transformation parameters. Using simu-
lations, we investigate the size of the estimation error and its dependence on sample size
and the presence of outliers. We find that the error decreases with the square root of
the number of probes per array and that the estimation is robust against the presence of
differentially expressed genes. Software is publicly available as an R package through the
Bioconductor project (http://www.bioconductor.org).

KEYWORDS: microarrays, error model, variance stabilizing transformation, resistant
regression, robust estimation, maximum likelihood, simulation
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1 Introduction

Two important topics in the analysis of microarray data are the calibration (normal-
ization) of data from different samples and the problem of variance inhomogeneity,
in the sense that the variance of the measured intensities depends on their expected
value. A family of transformations has been proposed that makes the variance of
transformed intensities roughly independent of their expectation valug B.

In the following, we describe and validate an approach to the estimation of the
parameters of a transformation for calibration and variance stabilization. In Sec-
tion 2, we formulate our assumptions about the data in terms of a statistical model.
It is a version of the multiplicative-additive error model that has been introduced in
the context of microarray data by Ideker et @l §nd Rocke and Durbirg]. The
framework encompasses two-color data from spotted cDNA arrays, Affymetrix
genechip probe intensities, and radioactive intensities from nylon membranes. In
Section3, we use the method of approximate variance stabilization to simplify the
model. In Sectiort, we derive a robust estimator for the parameters of the cali-
bration and the variance stabilizing transformation. Finally, in Sed&jone use
simulations to investigate the validity of the variance stabilizing transformation and
to evaluate the estimator for different sample sizes and parameter regimes.
Applications to real data, demonstrating increased sensitivity and specificity for
the detection of differentially expressed genes compared to other methods, have
previously been described][ The comparison method and program code are pro-
vided in a Bioconductor vignettes], with the intention to make it easy for other
scientists to reproduce this type of comparison.

2 The model

A microarray consists of a set of probes immobilised on a solid support. The probes
are chosen such that they bind to specific sample molecules; for DNA arrays, this
is ensured by the sequence-specificity of the hybridization reaction between com-
plementary DNA strands. The interesting fraction from the biological sample is
prepared in solution, labeled with fluorescent dye and allowed to bind to the array.
The abundance of sample molecules can then be compared through comparing the
fluorescence intensities at the matching probe sites.

The measured intensity,; of probek = 1,...,n for samplei = 1,...,d may be
decomposed into a specific and an unspecific part,

Yki = Oki + BriTh- (1)

Here, zy; is the abundance of the transcript represented by pkoimethe sam-
ple i, Bx; is a proportionality factor, and;; subsumes unspecific signal contri-
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butions which may be caused by effects such as non-specific hybridization, cross-
hybridization or background fluorescence.

The offsetsay,; and gain factorsgs,; are usually not known, but microarray tech-
nologies are designed in such a way that their values for différemtd: are re-

lated. This makes it possible to infer statements about the concentratioinem

the measured datg,;. Relations between the offsets and gain factors for different

k andi can be expressed in terms of a further decomposition,

Bri = Bive™, 2)
Qi = G+ Vk. 3)

Thus, the gain factor is the product of a probe affinjity which is the same for all
measurements involving probes of tybetimes a normalization factg#;, which
applies to all measurements from sampl&he remaindeg; / (5;v«) is accounted

for by e+, One can choose the units@fand~; such thad , nx; = >, mki = 0.

The unspecific signal contributian,; can be decomposed into a per-sample offset

a; and a remainder; with ), 73, = 0.

The probe affinityy;, may depend, for example, on the probe sequence, secondary
structure and the abundance of probe molecules on the array. The normalization
factor 5; may depend, for example, on the amount of MRNA in the sample, on the
labeling efficiency, and on dye quantum yield. The idea behind the decomposi-
tions (1)—(3) is that while the individual values af;; andz;; may fluctuate around

zero, they do so in an unsystematic, random manner. Thus, for example, we as-
sume that there are no systematic non-linear effects, which would imply trends in
theny; or vg; dependent on the value of;.

Now one can reduce the parameter complexity of Egnti{rough the following

three modeling steps:

1. Do not try to explicitly determine the probe affinitieg. They can be ab-
sorbed intang; = vk, Which may be considered a measure of the abun-
dance of transcript in samplei in probe-specific units.

2. Treatny; andg; as “noise terms” coming from appropriate probability dis-
tributions.

3. Estimate the values of the normalization factGrand offsets:;, as well as
parameters of the probability distributions from the data.

Thus, Egn. {) leads to the following stochastic model:

Yii —a;

Bi

. iid iid
= my; €™ + vy, Miei ~ Loy Vi ~

Ly. 4

http://www.bepress.com/sagmb/vol2/iss1/art3
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Here,vy; = iy /5; is the additive noise scaled by the normalization fagoiThe
right hand side of Egn4j is a combination of an additive and a multiplicative error
term. It was proposed by Rocke and Durbfi, [using normal distributiong,, =
N(0,02) and£, = N(0,07). In the following, we will consider distributions,,
and., that are unimodal, roughly symmetric, and have mean zero and var'ra?pces
ando?, respectively, but we do not rely on the assumption of a normal distribution.
The left hand side describes the calibration of the microarray intensjtjélsrough
subtraction of offsets; and scaling by normalization factofs [7, 3].
According to Eqn.4), the variance of the random varialdg, is related to its mean
through

Var(Yy;) = ¢® (E(Yii) — a;)* + 3oz, (5)
wherec? = Var(e")/E?(e") is a parameter of the distribution gf~ £,. In the
log-normal case¢? = exp(a%) — 1. Thus, the relationship of the variance to
the mean is a strictly positive, quadratic function. For a highly expressed gene,
the variance VdiYy;) is dominated by the quadratic term and the coefficient of
variation ofYy; is approximately:, independent of andi. For a weakly expressed
or unexpressed gene, the variance(Vg/) is dominated by the constant term and
the standard deviation d&f;; is approximatelys;o,, which may be interpreted as
the background noise level for tiigh sample, and is independentfof

3 Variance stabilizing transformations

Consider a random variablE with expectation value 0 and a differentiable func-
tion h defined on the range df. Then

h(X) = h(0) + A'(0) X +r(X) X, (6)
wherer is a continuous function with(0) = 0 and
Var(h(X)) = h'(0)? Var(X) + Var(r(X) X) + 2r'(0) E(r(X) X?).  (7)

If h does not deviate from linearity too strongly within the range of typical values
of X, thenr(X) is small and the terms involving(X') on the right hand side of
Eqn. (7) are negligible. Thus, for a family of random variabléswith expectation
values EY,, ) = w and variances V&r,,) = v(u)

Var(h(Yy)) ~ I/ (u)? v(u). (8)

An approximately variance-stabilizing transformation can be obtained by finding a
functionh for which the right hand side is constant, that is, by integratitig) =
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1)71/2(u), ,
o) = [ 1/v/olu) du. (©)

Note that if » is approximately variance-stabilizing, then soqigh + ~» with
V1,72 € R.
For a variance-mean dependence as in Egnilfis leads to

hi(y) = arsinh Y ; ai, (10)

)

with b; = ;0. /c. Thus, on the transformed scale the modgltékes the simple
form

arsinh kzb' %= Lhki + Ekis eri % Le, (11)

1
where u; represents the true abundance on the transformed scale oftgene
samplei and £, has mean zero and variangée The relation between,,; andmy;
is pu; = E(arsinh (= (mye™ + vy;))) ~ arsinh(Smy;).

7 -
7 7
v 7
.2
© Py E asinh(x/b)
R b=0.5
< v
“ -7, b=1
! -, c—- p=2
e : —
-7 i -+ log(x)
~ |7 :
I
T T T
-2 0 2 4
X

Figure 1: Graph of the functior1() for a; = 0 and three different values éf. For
comparison, the dotted line shows the graph of the logarithm function.

The graph of the functionl() is shown in Figl1. The inverse hyperbolic sine and
the logarithm are related to each other via

arsinh(z) = log(z + V% +1) (12)
log(z) = arsinh% (x — i) (13)

http://www.bepress.com/sagmb/vol2/iss1/art3
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lim (arsinhz —logx —log2) = 0. (14)
Functions that may have, within the range of the data, a graph similar to that of
arsinh((y — a)/b) have been proposed, among them the shifted logarithm and the
linlog-transformation$, 9]

h(y) = log? - - (15)
= f log(y/b), y>a
hy) = { yla+log@/h) -1, y<a (16)

While transformation X0) corresponds, via Eqn9), to a variance-mean depen-
dence of the formv(u) oc (u — a)? 4 const., the two transformation$) and (L6)
correspond to variance-mean dependences of the form

o(u) o< (u—a)?

2 —
_ u”, u>a
U(u) X { &2, u<a

respectively. All of these may fit the data, but in the following we choose trans-
formation (L0) both for computational convenience and for its interpretability in
terms of the error mode#.

4 Parameter estimation

Model (11) relates the measured intensitigg to the true expression valugsg;

in terms of the calibration and variance stabilization parameteandb; and the
noise distributionC.. We would like to estimate the parametegsandb;. To this
end, we consider the non-differentially expressed genes, for which= . for

all 4. If in addition we require thaf. be normal, we obtain

Yii — a; ii
MUt ers e S N(0,c2). (17)

arsinh
(2

In the following, we derive the maximum likelihood (ML) estimator for the param-
etersa; andb;. Then, by using a robust procedure similadgast trimmed sum
of squares regressioflQ], we extend its validity to situations in which there is a
minority fraction of differentially expressed genes, for which modé) (s mis-
specified, and to distributions, that are approximately normal in the center, but
may have different tails.

Produced by The Berkeley Electronic Press, 2004
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4.1 Maximum likelihood estimation

According to Eqn. 17), the probability of observing a valug,; within an interval
Wi Yici] is

« w i\Yki) —
Pl e i) = [ o (M) an
hi(ygi)
Y L ( )
i\Yki) —
= /P (%) R (Yki) Y- (18)
Yii

Here,p denotes the density of the standard normal distribution. The ML estimates
of the model parametefs:; }, {b; }, ¢, { ux } are those that maximize the likelihood

n d
TTTT o (M=) b o (19)

k=1i=1

Now the ML estimates of the parametershgfare those that maximize thpeofile
likelihoodpl(ay, b1, ..., aq, bg), Which is obtained by replacing and by their
maximizing values11]

d
1
i = = > hi(Yk
fik d;:l (Yri)
1 n d
A2 A~ N\2
= — hi(Yri) — :
¢ ndk:“;( (Yki) — fix)

This results in

pl(ai,by,...,aq4,bq) =

end/Q

n d
(22 nd LT TT 7 Cora)- (20)

k=1i=1

http://www.bepress.com/sagmb/vol2/iss1/art3
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The profile log-likelihood is, up to a constant, given by

pu(al) blv <.y A4, bd) =

= —ndlogé+ ZZlogh Yki)

k=11=1

nd n 4 "G
= - log ( Z(h (yri) — ) Ogh Yki), (21)
k

k=1 i=1 =1i=1

and can be maximized numerically under the constraints 0. The first term on

the right hand side involves the sum of squared residuals, while the second term
contains the Jacobi determinant of the transformation. The optimization landscape
is not too different from that of an ordinary quadratic cost function and we have
never encountered multiple local maxima. Our implementation uses the R function
optim with the method_-BFGS-B .

4.2 Resistant regression

The maximum likelihood estimator that is obtained by maximiz) {s sensitive

to deviations from normality and to the presence of differentially expressed genes,
for which ug; = pi does not hold. In the following, we consider a modification
which makes it more robust against outliers.

In least sum of squares (LS) regressitre fitted paramete@ are those that min-
imize the sum of squared residuals,

a|s = argmin Z re(a)?, (22)
¢ k=1

wherery(a) is the residual between fit and tketh data point and: is the num-
ber of data points. Iteast trimmed sum of squares (LTS) regres$itj, this is

replaced by
ajis = argmln mln Z re(a)?. (23)
keK
The minimization ovel runs over all subsets dfi, ..., n} of size[nqgus|, where

0.5 < qis < 1 and[z] is the smallest integer greater or equaktowhile the LS
estimate can be arbitrarily off due to even a single outlier, the LTS estimator has a
breakdown point of approximately — qis, that means, the estimation error does
not become too large as long as the fraction of outliers is lesslthafs.

Practically, the exact solution o28) is possible only for smalh. We use the
following heuristic iterative procedure. In the expressiaf) for the profile log-
likelihood, replace the sums ovér= 1,...,n by sums ovelk € K. Start the
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iteration with K = {1,...,n}. This results in an initial parameter estimate=
(G1,b1,...,aq,bq) and residuals

T = Z(l}l(ykz) — ﬂk)2, k = 1, Loy n. (24)

Now partition the se{1,...,n} into 10 slicesTs, such thatl; contains thosé
for which ji; is smaller than the 10%-quantile of tiag, 75> those for whichjy
is between the 10%- and 20%-quantile, and so on.(.ebe theg;s-quantile of
{rx|k € Ts}. A new selectionk” of putative non-outlying probes is found through

K = J{k € Tulre < Qs}. (25)

With this, compute new parameter estimates, and repeat the iteration. Stable esti-
mates are usually reached after less than 10 iterations.

The iteration procedure is a simple version of the method proposetjn [n
addition, rather than permitting fak any subset of 1,...,n} of size [ngis],

we require thatX’ contains an equal amount of data from every slice, according
to Eqn. @5). This has the following advantage. Robust estimation involves the
weighting of data points as more or less reliable and thus implies a trade-off be-
tween being diverted by outliers, and ignoring important data. To find a good
compromise, it can be useful to consider further context information. Here, we
have invoked the notion that the fraction of outliers should be roughly the same
across the whole range of average intensitigs

5 Results

5.1 Properties of the variance stabilizing transformation

The derivation of the variance stabilizing transformatib@) jnvolves the approx-
imation @). Fig. 2 investigates how well this approximation holds for a family
of random variables distributed according to

Y, = me + v, an(O,JTZ]), v~ N(0,1) (26)

for parametersn, o, > 0. This corresponds to the right hand side of Eg). (
In the notation of Eqn.Z46), the variance stabilizing transformatiohQj takes the
form h(y) = arsinh(cy) with ¢ = exp(a%) — 1. If mis large,Y,, is dominated
by the multiplicative termY;, ~ me", andh(Y,,) =~ log(Y,,). The asymptotic
standard deviation di(Y;,) for m — oo is thus Sdlog(me")) = o,. InFig.2, the

http://www.bepress.com/sagmb/vol2/iss1/art3
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behavior of S@h(Y;,)) for finite values ofm is compared against the asymptotic
value for different choices of the parametsy. For each plot, the function was
numerically evaluated at 60 valuesafthrough Monte Carlo integration with)®
samples. Even in the case @f = 0.4, which corresponds to a probability of
5% of observing a relative error larger thah’* ~ 2.2, the standard deviation
Sdh(Y;,)) does not depart from the asymptotic value by more than a factor of

1.035.
0,=0.05 0,=0.1
<t <
o o
_— P
) L
= g = g
O Jyore———————— = o L —= —
R Z g
< <
e} e}
0 [{e] 0 [{e]
o o
o I I I I I I I o I I I I I I I
0 20 40 60 0 20 40 60
m m
0,=0.2
< <
o 4 o
= — - —
o} o}
= 5 = o
€ S L o — €
z 3 z 3
< <
o) o)
0 [{e] 2 [{e]
o o
o I I I I I I I o I I I I I I I
0 20 40 60 0 20 40 60
m m

Figure 2: Validation of the approximation used in Sect®ri-or a family of ran-

dom variables distributed according to the error mo@#),(the plots show the
standard deviation of the transformed valui€%’,,) = arsinh(cY,,), divided by

the asymptotic value,, that is obtained forn — oo.

An example for the effect of the variance stabilizing transformatid) 6n real

data is shown in Fig3. RNA from biopsies of adjacent parts of a kidney tumor
was labeled with red and green dyes, respectively, and hybridized to a cDNA mi-
croarray. Fluorescence intensities were measured with a laser scanner. Per-spot
summary intensity values were determined with the ArrayVision software (Imag-
ing Research Inc., St. Catharines, Ontario, Canada). A spot’s intensity was ob-
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2000 4000 6000 8000

oA

0 2000 4000 6000 8000

2000 4000 6000 8000

o

Figure 3: Three different transformations applied to data from a cDNA microar-
ray. The top panel shows the differente, = yro — yr1 between background-
subtracted and calibrated red and green intensities op-&éxés versus the rank of
their sumy; + yro ON thez-axis. Similarly, the middle plot shows the log-ratio
Alog(yx) = log(yke) — log(yk1) versus the rank of the sulag(yx1) + log(yk2)

and the bottom plot showa\h(yx) = h(yr2) — h(yk1) versus the rank of
h(yk1) + h(yk2). Plotting against the rank distributes the data evenly along the
z-axis and thus facilitates the visualization of variance heterogeneity.

http://www.bepress.com/sagmb/vol2/iss1/art3
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tained by subtracting the median brightness of surrounding pixels from the median
of those within. The expression levels of almost all genes in the two samples are
expected to be unchanged. Thus, the vertical width of the band of points repre-
sents the scale of the distribution of differences. For the untransformed intensities
(upper plot), the width increases to the right, in accordance with the error model
described in Sectio. For log-ratios (middle plot), the differences are largest at
the left end, for measurements of low intensity. The far left region of the plot cor-
responds to spots in which one or both of the intensities were smaller than 1, in
which case the logarithm was replaced by the value 0. While the log-ratios have an
interquartile range (IQR) of abowt2 in the high-intensity regime, the IQR is as
large a9).95 for the points with ranks 1500 to 2000. A constant IQR of alibfit
along the whole range of intensities is observed for the generalized logAétio
(bottom plot). Note that this value is the same as that in the high-intensity end of
the log-ratio plot, in agreement with the asymptotic relationshi). (

The marginal distribution ofAh is compared a against a normal distribution in
the quantile-quantile (QQ) plot Figt. While the distribution is roughly normal

in the center and approximately symmetric, its tails are heavier than normal. This
observation, which we have made on many data sets, motivates the use of normal
theory and the robust modification of Sectibn

5.2 Simulation of data

To verify the computational feasibility of the estimator constructed in Seetion
and to investigate its behavior for different sample sizes, we ran simulation studies.
Simulated data were generated according to mddgwith £. = N (0, ¢?).

Values for the parameteys;; were generated as follows. First, followintd, for

each gené a valueu, was drawn according to

pr = arsinh (my) , 1/my ~T'(1,1). (27)

The density of the reciprocdl(1, 1) distribution is shown in Figs. To model the
mixture of non-differentially and differentially expressed genes, indicaiprs
{0,1} were generated witl[p, = 1] = pgir. For each gene with, = 1 and
for each sampleé > 2 a factorsy; € {—1,1} was drawn withP[s;; = 1] = pyp
and an amplitudey; was drawn from the uniform distributiofi (0, zmax). Thus,
pi indicates whether or not geeshows differential expressionj;, whether it is
up- or down-regulated in sampleompared to sample 1;;, by how much. These
were combined to obtain

Ml = Mk
Mki = Mkt DESkiZki, t > 2. (28)

11
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-05 0.0 05 1.0 15

Sample Quantiles

-1.5
|

Theoretical Quantiles
Figure 4: Normal QQ-plot of the distribution @dkh, using the same data as in

Fig. 3. The dashed lines correspond to the 5% and 95% percentiles of the sample
distribution, respectively.

http://www.bepress.com/sagmb/vol2/iss1/art3
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density of simulated my

Figure 5: Density of the reciprocal distribution,1/m; ~ I'(1,1). At the right
end, the plot is cut off at the 90%-quantile of the distribution.

Values for the calibration parametersandb; were generated through

iid

a; =0, ag,...,aq ~ U(—=Aa, Aa)
by =1, ba, ..., bg 2 LN(0,1),

where Aa = 0.95 roughly corresponds to the peak of the distribution shown in
Fig. 5, U(—Aa, Aa) is the uniform distribution on the intervgtAa, Aa], and
LN(0,1) is the log-normal distribution that corresponds to the standard normal
distribution. This yielded simulated dag@; = a; + b; sinh(ug; + €xi)-
The matrixyy; of simulated data was presented to the software implementation
in the Bioconductor 14] packagevsn . It returns the estimated transformations
hi,..., hq, parameterized by, ..., aq andby, ..., b, (see Egn.10)), as well as
the matrix of transformed dafg,; = arsinh((y; —a;)/b;). Generalized log-ratios
were calculated as X R R

Ahy; = by — hpa (29)

and compared to the true values

Ahy; = hii — by, (30)

Produced by The Berkeley Electronic Press, 2004
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| simulation \ | A B C D
number of probes n 384,...,69120 9216 9216 9216
number of samples d 2 2,...,64 2 2
proportion of Ddiff 0 0 0,...,0.6 0.2
differentially expressed
genes
proportion of Dup - - 0.5,1 0,...,1
up-regulated genes
amplitude of differentiall zmax - - 2 2
expression
trimming quantile qits 0.5,0.75,1
asymptotic coefficient | ¢ 0.2
of variation

Table 1: Simulation parameters.

with hy; = ug; + €k, by means of the root mean squared deviation

d
o= ﬁ Z Z(Aﬁki — Ahy;)?, (31)

=2 k€k

wherex is the set of for which p, = 0.

For a given set of simulation parameters, this procedure was repeated multiple
times, resulting in a simulation distribution of the root mean squared &ribhis

was used to obtain the error bars shown in F&s8, and9. The error bars are
centered at the mean and extend by twice the standard error of the mean in each
direction.

5.3 Simulation results

Four series of simulations were performed to investigate the influence of the num-
ber of probes, the number of samples, the proportion of differentially expressed
genes, and the choice of the trimming quaniile The parameter settings are
summarized in Tablé.
The dependence of the estimation efron the number of probesand the number
of samples] was investigated in simulation series A and B. The results are shown
in Fig. 6. In the left plot, the number of probesvaries from 384 to 69120. From
the plot, a scaling of the root mean squared error approximately as
1
0 NG (32)

http://www.bepress.com/sagmb/vol2/iss1/art3
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NS 2 NI —5
i \iki\ —-— 1 $7A —-— 1
PSRN % N
$ SN $ 7
S \\%)\ o

10 12 14 16 1 2 3 4 5 6

log, n log, d

Figure 6: Dependence of the estimation ean the number of probes (left
panel) and the number of samplégight panel), for three different choices of the
trimming quantilegs. The dashed line in the left panel has a slope-¢f2 and
corresponds to a scaling o« 1/4/n.

can be observed. In the right platyaries from 2 to 64, again with three different
values ofqs. While § does slightly decrease with the decrease is much slower
than that withn and does not show an obvious scaling suct8&k (The difference
between the two plots may be explained by the fact that the number of parameters
of the transformations1(Q) is 2d. Thus, the number of data points per parame-
ter remains constant whehis increased, but increases proportionally wheis
increased.

The dependence of the required computation time on the parametéiend g5

is shown in Fig.7. The plots indicate a scaling approximately as

tcpu X n X d. (33)

The computation times were measured with the Bioconductor paslsageersion

1.0.3 andR version 1.6.1 on a DEC Alpha EV68 processor at 1 GHz. On this
system, the proportionality factor i88) is about 2 ms.

The effect of the presence of differentially expressed genes on the estimation error
0 was investigated in simulation series C and is shown in&i§Vith qus = 1, i. €.,
without use of the robust trimming criteriofibecomes large even in the presence

of only a few differentially expressed genes. Ag: increases, the estimation
error remains smaller with trimming at the mediajgs(= 0.5) than at the 75%

15
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Figure 7: Dependence of the computation titggy on the parameters, d, and
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http://www.bepress.com/sagmb/vol2/iss1/art3



Huber et al.: Variance stabilization of microarray data

quantile grs = 0.75). Asymmetric situationsp,, = 1, right panel) are worse than
symmetric onesy(,, = 0.5, left panel), but still can be handled reasonably as long
as the proportion of differentially expressed genes is not too large.
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Figure 9: Estimation errof and bias) for different values of the asymmetry pa-
rametermp,,. Among the set of differentially expressed geneg,is the fraction of
up-regulated and — pyp the fraction of down-regulated genes.

Another look at the influence of asymmetry between up- and down-regulated genes
is shown in Fig.9, which was obtained from simulation series D. Hergz was
fixed at0.2. The right panel shows the average bias

1 .
0= % (Ahm — Ah,ﬂ) . (34)

The robust procedures;§ = 0.5 and0.75) perform much better than the unrobust
one s = 1). Bias# and error§ are smallest when the fractions of up- and
down-regulated genes are about the same. An interesting feature & iBithe
asymmetry of the plots about the vertical lipg, = 0.5. The presence of up-
regulated genes has a somewhat stronger effect and 8 than that of down-
regulated ones. This appears to be related to the skewness of the distribution of
i (see Eqn.Z7)), and to the curvature of the functiohd).
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6 Discussion

Models are never correct, but they may be useful. There is a trade-off between
the wish to describe as much detail as possible and the problem of overfitting.
Model (17) has two parameters per sample, an oftgetnd a normalization fac-

tor b;, and one parameter for the whole experiment, the standard deviatidn
addition, we assume that for each non-differentially expressedigtdreecenter of

the distribution of intensities is parameterized;byfor all samples. Many exten-

sions and variations of the model are possible. Instead of offsets and normalization
factors that are common for all measurements from a sample, print-tip-specific or
plate-specific parameters may be usefl.[ Systematic differences between dif-
ferent production batches of arrays or reagents could be modeled by allowing for
different values of.;, in the different batches. Furthermore, we have assumed that
the standard deviations of the additive noise terms for different samples are related
to each other via Sdy;) = const. We find this to be an acceptable approximation
for the data we have encountered, but other relationships, sucl{as)Sd const.

or Sd ;) = \; with further parameters; could also be appropriate.

Error modeling and calibration depend on the particularities of the technologies
used. For this article, we have simply considered the probe intensities as given, set-
ting aside important questions such as how the labeling and detection are realized
and how the probe intensities are obtained from the fluorescence images. Whether
or not the intensities measured from an experiment accord to the assumptions laid
out in Sectior? has to be verified case by case; however, we have generally found
good agreement with data from two-color spotted cDNA arrays, from radioactive
nylon membranes, and from Affymetrix genechips. An advantage of the modeling
approach compared to a heuristic, algorithm-oriented approach is that it provides
criteria for quality control: by explicitly stating the assumptions made on the data,
insufficient data quality can be detected by statistical tools such as residual analy-
sis.

On cDNA arrays, typically each probe is sensitive for a distinct gene transcript.
The calibrated and transformed intensities may be directly used as a measure for
the abundance of transcripts in the samples. On Affymetrix genechips, multiple
oligonucleotides of potentially different specificity and sensitivity probe for the
same transcript. There, we recommend to use our method on the individual probe
intensities. Approaches to the question of how these then can be combined into
per-gene summary values are described in the refereh6ek7, 18].

The computation time consumed by our software implementation is generally too
large for interactive use. For example, with= 40000 probes,d = 100 samples

and a proportionality factor of 2 ms in EqrR3), tcpu =~ 2h. The time-critical part

of the computations is the iterative likelihood optimization. There are two ways to
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reduce the time: First, the proportionality factor could be reduced by implement-
ing code in C instead of R. Second, sublinear scaling can be achieved instead of
Eqn. B3) by not using the data from all probes, but only from a (quasi-)random
subset.

From the point of view of the user, two important issues are interpretability and
bottom-line performance. In these respects, the method presented here needs to be
compared against established approaches that are based on the logarithmic trans-
formation and the calculation of (log-)ratios. A comparison on real data showed
higher selectivity and sensitivity for the idenfication of differentially expressed
genes 8. The (log)-ratio has, at first sight, the advantage that it can be sim-
ply and intuitively interpreted in terms of “fold change”. However, the value of
the log-ratio is highly variable or may be undefined when either the numerator
or the denominator are close to zero. Since many microarray data sets include
genes that are not or only weakly expressed in some of the conditions of interest,
the significance of fold changes can be difficult to assess for a large and poten-
tially important part of the data. Furthermore, many authors have noted a need
for non-linear normalization transformations to be applied in conjunction with the
log-transformation15, 18, 19, 20]. These have the goal of removing an intensity
dependent bias from the log-ratios. They are often implemented through a scat-
terplot smoother or a local regression estimator. The result of that has no longer a
simple interpretation in terms of fold changes.

The approach presented in this paper offers a rational and practicable solution to
these problems. Through the criterion of variance stabilization, we arrive at a trans-
formation that corresponds to the logarithm when the intensity is well above back-
ground, but has a smaller slope for intensities close to zero. Thus, the generalized
log-ratio Ah coincides with the usual log-rati log when the latter is meaning-

ful, but is shrunk towards zero when the numerator or denominator are small. Non-
linear calibration transformations are often motivated by the curvilinear appearance
of the scatterplot on the log-log scale. This may be caused, for example, by differ-
ences in the overall background between different arrays or color channels. In that
case, these differences may also be modeled by the family of transformadtipns (
which allow different offsets:; for different arrays or colors. An advantage of

this over calibration by local regression is that it does not depend on the choice of
a smoothing bandwidth, and that the offsetand scaling factors; are easier to
interprete.

While our approach approximately removes the intensity-dependence of the vari-
ance, this does not necessarily mean that the variance of the data for all genes is
the same. There may still be technical or biological reasons for the variance of
one gene being different from that of another, or even from itself under a differ-
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ent biological condition. For instance, the tightness of regulatory control could be
different for a highly networked transcription factor than for a protein with mainly
structural function. However, whether or not such gene- or condition-specific vari-
ances play a role, in any case the removal of the intensity-dependence should be
advantageous for subsequent analyses.
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