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Parameter estimation for the calibration and

variance stabilization of microarray data

Wolfgang Huber, Anja von Heydebreck, Holger Sueltmann, Annemarie
Poustka, and Martin Vingron

Abstract

We derive and validate an estimator for the parameters of a transformation for the
joint calibration (normalization) and variance stabilization of microarray intensity data.
With this, the variances of the transformed intensities become approximately indepen-
dent of their expected values. The transformation is similar to the logarithm in the high
intensity range, but has a smaller slope for intensities close to zero. Applications have
shown better sensitivity and specificity for the detection of differentially expressed genes.
In this paper, we describe the theoretical aspects of the method. We incorporate calibra-
tion and variance-mean dependence into a statistical model and use a robust variant of
the maximum-likelihood method to estimate the transformation parameters. Using simu-
lations, we investigate the size of the estimation error and its dependence on sample size
and the presence of outliers. We find that the error decreases with the square root of
the number of probes per array and that the estimation is robust against the presence of
differentially expressed genes. Software is publicly available as an R package through the
Bioconductor project (http://www.bioconductor.org).

KEYWORDS: microarrays, error model, variance stabilizing transformation, resistant
regression, robust estimation, maximum likelihood, simulation



1 Introduction

Two important topics in the analysis of microarray data are the calibration (normal-
ization) of data from different samples and the problem of variance inhomogeneity,
in the sense that the variance of the measured intensities depends on their expected
value. A family of transformations has been proposed that makes the variance of
transformed intensities roughly independent of their expectation value [1, 2, 3].
In the following, we describe and validate an approach to the estimation of the
parameters of a transformation for calibration and variance stabilization. In Sec-
tion 2, we formulate our assumptions about the data in terms of a statistical model.
It is a version of the multiplicative-additive error model that has been introduced in
the context of microarray data by Ideker et al. [4] and Rocke and Durbin [5]. The
framework encompasses two-color data from spotted cDNA arrays, Affymetrix
genechip probe intensities, and radioactive intensities from nylon membranes. In
Section3, we use the method of approximate variance stabilization to simplify the
model. In Section4, we derive a robust estimator for the parameters of the cali-
bration and the variance stabilizing transformation. Finally, in Section5, we use
simulations to investigate the validity of the variance stabilizing transformation and
to evaluate the estimator for different sample sizes and parameter regimes.
Applications to real data, demonstrating increased sensitivity and specificity for
the detection of differentially expressed genes compared to other methods, have
previously been described [3]. The comparison method and program code are pro-
vided in a Bioconductor vignette [6], with the intention to make it easy for other
scientists to reproduce this type of comparison.

2 The model

A microarray consists of a set of probes immobilised on a solid support. The probes
are chosen such that they bind to specific sample molecules; for DNA arrays, this
is ensured by the sequence-specificity of the hybridization reaction between com-
plementary DNA strands. The interesting fraction from the biological sample is
prepared in solution, labeled with fluorescent dye and allowed to bind to the array.
The abundance of sample molecules can then be compared through comparing the
fluorescence intensities at the matching probe sites.
The measured intensityyki of probek = 1, . . . , n for samplei = 1, . . . , d may be
decomposed into a specific and an unspecific part,

yki = αki + βkixki. (1)

Here,xki is the abundance of the transcript represented by probek in the sam-
ple i, βki is a proportionality factor, andαki subsumes unspecific signal contri-
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butions which may be caused by effects such as non-specific hybridization, cross-
hybridization or background fluorescence.
The offsetsαki and gain factorsβki are usually not known, but microarray tech-
nologies are designed in such a way that their values for differentk andi are re-
lated. This makes it possible to infer statements about the concentrationsxki from
the measured datayki. Relations between the offsets and gain factors for different
k andi can be expressed in terms of a further decomposition,

βki = βi γk e
ηki , (2)

αki = ai + ν̄ki. (3)

Thus, the gain factor is the product of a probe affinityγk, which is the same for all
measurements involving probes of typek, times a normalization factorβi, which
applies to all measurements from samplei. The remainderβki/(βiγk) is accounted
for by eηki . One can choose the units ofβi andγk such that

∑
k ηki =

∑
i ηki = 0.

The unspecific signal contributionαki can be decomposed into a per-sample offset
ai and a remainder̄νki with

∑
k ν̄ki = 0.

The probe affinityγk may depend, for example, on the probe sequence, secondary
structure and the abundance of probe molecules on the array. The normalization
factorβi may depend, for example, on the amount of mRNA in the sample, on the
labeling efficiency, and on dye quantum yield. The idea behind the decomposi-
tions (1)–(3) is that while the individual values ofηki andν̄ki may fluctuate around
zero, they do so in an unsystematic, random manner. Thus, for example, we as-
sume that there are no systematic non-linear effects, which would imply trends in
theηki or ν̄ki dependent on the value ofxki.
Now one can reduce the parameter complexity of Eqn. (1) through the following
three modeling steps:

1. Do not try to explicitly determine the probe affinitiesγk. They can be ab-
sorbed intomki = γkxki, which may be considered a measure of the abun-
dance of transcriptk in samplei in probe-specific units.

2. Treatηki andν̄ki as “noise terms” coming from appropriate probability dis-
tributions.

3. Estimate the values of the normalization factorsβi and offsetsai, as well as
parameters of the probability distributions from the data.

Thus, Eqn. (1) leads to the following stochastic model:

Yki − ai
βi

= mki e
ηki + νki, ηki

iid∼ Lη, νki
iid∼ Lν . (4)
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Here,νki = ν̄ki/βi is the additive noise scaled by the normalization factorβi. The
right hand side of Eqn. (4) is a combination of an additive and a multiplicative error
term. It was proposed by Rocke and Durbin [5], using normal distributionsLη =
N(0, σ2

η) andLν = N(0, σ2
ν). In the following, we will consider distributionsLη

andLν that are unimodal, roughly symmetric, and have mean zero and variancesσ2
η

andσ2
ν , respectively, but we do not rely on the assumption of a normal distribution.

The left hand side describes the calibration of the microarray intensitiesYki through
subtraction of offsetsai and scaling by normalization factorsβi [7, 3].
According to Eqn. (4), the variance of the random variableYki is related to its mean
through

Var(Yki) = c2 (E(Yki)− ai)2 + β2
i σ

2
ν , (5)

wherec2 = Var(eη)/E2(eη) is a parameter of the distribution ofη ∼ Lη. In the
log-normal case,c2 = exp(σ2

η) − 1. Thus, the relationship of the variance to
the mean is a strictly positive, quadratic function. For a highly expressed gene,
the variance Var(Yki) is dominated by the quadratic term and the coefficient of
variation ofYki is approximatelyc, independent ofk andi. For a weakly expressed
or unexpressed gene, the variance Var(Yki) is dominated by the constant term and
the standard deviation ofYki is approximatelyβiσν , which may be interpreted as
the background noise level for thei-th sample, and is independent ofk.

3 Variance stabilizing transformations

Consider a random variableX with expectation value 0 and a differentiable func-
tion h defined on the range ofX. Then

h(X) = h(0) + h′(0)X + r(X)X, (6)

wherer is a continuous function withr(0) = 0 and

Var(h(X)) = h′(0)2 Var(X) + Var(r(X)X) + 2h′(0) E(r(X)X2). (7)

If h does not deviate from linearity too strongly within the range of typical values
of X, thenr(X) is small and the terms involvingr(X) on the right hand side of
Eqn. (7) are negligible. Thus, for a family of random variablesYu with expectation
values E(Yu) = u and variances Var(Yu) = v(u)

Var(h(Yu)) ≈ h′(u)2 v(u). (8)

An approximately variance-stabilizing transformation can be obtained by finding a
functionh for which the right hand side is constant, that is, by integratingh′(u) =
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v−1/2(u),

h(y) =
∫ y

1/
√
v(u) du. (9)

Note that if h is approximately variance-stabilizing, then so isγ1h + γ2 with
γ1, γ2 ∈ R.
For a variance-mean dependence as in Eqn. (5), this leads to

hi(y) = arsinh
y − ai
bi

, (10)

with bi = βiσν/c. Thus, on the transformed scale the model (4) takes the simple
form

arsinh
Yki − ai

bi
= µki + εki, εki

iid∼ Lε, (11)

whereµki represents the true abundance on the transformed scale of genek in
samplei andLε has mean zero and variancec2. The relation betweenµki andmki

is µki = E(arsinh( c
σν

(mkie
ηki + νki))) ≈ arsinh( c

σν
mki).

−2 0 2 4

−
2

−
1

0
1

2
3

x

asinh(x/b)

b=0.5
b=1
b=2
log(x)

Figure 1: Graph of the function (10) for ai = 0 and three different values ofbi. For
comparison, the dotted line shows the graph of the logarithm function.

The graph of the function (10) is shown in Fig.1. The inverse hyperbolic sine and
the logarithm are related to each other via

arsinh(x) = log(x+
√
x2 + 1) (12)

log(x) = arsinh
1
2

(
x− 1

x

)
(13)
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lim
x→∞

(arsinhx− log x− log 2) = 0. (14)

Functions that may have, within the range of the data, a graph similar to that of
arsinh((y − a)/b) have been proposed, among them the shifted logarithm and the
linlog-transformation [8, 9]

h̃(y) = log
y − ã
b̃

(15)

h̄(y) =
{

log(y/b̄), y ≥ ā
y/ā+ log(ā/b̄)− 1, y < a

(16)

While transformation (10) corresponds, via Eqn. (9), to a variance-mean depen-
dence of the formv(u) ∝ (u− a)2 + const., the two transformations (15) and (16)
correspond to variance-mean dependences of the form

ṽ(u) ∝ (u− ã)2,

v̄(u) ∝
{
u2, u ≥ ā
ā2, u < ā

respectively. All of these may fit the data, but in the following we choose trans-
formation (10) both for computational convenience and for its interpretability in
terms of the error model (4).

4 Parameter estimation

Model (11) relates the measured intensitiesYki to the true expression valuesµki
in terms of the calibration and variance stabilization parametersai andbi and the
noise distributionLε. We would like to estimate the parametersai andbi. To this
end, we consider the non-differentially expressed genes, for whichµki = µk for
all i. If in addition we require thatLε be normal, we obtain

arsinh
Yki − ai

bi
= µk + εki, εki

iid∼ N(0, c2). (17)

In the following, we derive the maximum likelihood (ML) estimator for the param-
etersai andbi. Then, by using a robust procedure similar toleast trimmed sum
of squares regression[10], we extend its validity to situations in which there is a
minority fraction of differentially expressed genes, for which model (17) is mis-
specified, and to distributionsLε that are approximately normal in the center, but
may have different tails.
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4.1 Maximum likelihood estimation

According to Eqn. (17), the probability of observing a valueyki within an interval
[yαki, y

ω
ki] is

P (yki ∈ [yαki, y
ω
ki]) =

hi(y
ω
ki)∫

hi(yαki)

ρ

(
hi(yki)− µk

c

)
dhi(yki)

=

yωki∫
yαki

ρ

(
hi(yki)− µk

c

)
h′i(yki) dyki. (18)

Here,ρ denotes the density of the standard normal distribution. The ML estimates
of the model parameters{ai}, {bi}, c, {µk} are those that maximize the likelihood

n∏
k=1

d∏
i=1

ρ

(
hi(yki)− µk

c

)
h′i (yki). (19)

Now the ML estimates of the parameters ofhi are those that maximize theprofile
likelihoodpl(a1, b1, . . . , ad, bd), which is obtained by replacingc2 andµk by their
maximizing values [11]

µ̂k =
1
d

d∑
i=1

hi(yki)

ĉ2 =
1
nd

n∑
k=1

d∑
i=1

(hi(yki)− µ̂k)2.

This results in

pl(a1, b1, . . . , ad, bd) =

=
n∏
k=1

d∏
i=1

1√
2πĉ

exp


(hi(yki)− µ̂k)2

2
nd

n∑
k=1

d∑
i=1

(hi(yki)− µ̂k)2

h′i(yki)

=
end/2

(2π)nd/2 ĉnd

n∏
k=1

d∏
i=1

h′i(yki). (20)
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The profile log-likelihood is, up to a constant, given by

pll(a1, b1, . . . , ad, bd) =

= −nd log ĉ+
n∑
k=1

d∑
i=1

log h′i(yki)

= −nd
2

log

(
n∑
k=1

d∑
i=1

(hi(yki)− µ̂k)2

)
+

n∑
k=1

d∑
i=1

log h′i(yki), (21)

and can be maximized numerically under the constraintsbi > 0. The first term on
the right hand side involves the sum of squared residuals, while the second term
contains the Jacobi determinant of the transformation. The optimization landscape
is not too different from that of an ordinary quadratic cost function and we have
never encountered multiple local maxima. Our implementation uses the R function
optim with the methodL-BFGS-B .

4.2 Resistant regression

The maximum likelihood estimator that is obtained by maximizing (21) is sensitive
to deviations from normality and to the presence of differentially expressed genes,
for which µki = µk does not hold. In the following, we consider a modification
which makes it more robust against outliers.
In least sum of squares (LS) regression, the fitted parameterŝa are those that min-
imize the sum of squared residuals,

âls = argmin
a

n∑
k=1

rk(a)2, (22)

whererk(a) is the residual between fit and thek-th data point andn is the num-
ber of data points. Inleast trimmed sum of squares (LTS) regression[10], this is
replaced by

âlts = argmin
a

min
K

∑
k∈K

rk(a)2. (23)

The minimization overK runs over all subsets of{1, . . . , n} of sizednqltse, where
0.5 < qlts ≤ 1 anddxe is the smallest integer greater or equal tox. While the LS
estimate can be arbitrarily off due to even a single outlier, the LTS estimator has a
breakdown point of approximately1 − qlts, that means, the estimation error does
not become too large as long as the fraction of outliers is less than1− qlts.
Practically, the exact solution of (23) is possible only for smalln. We use the
following heuristic iterative procedure. In the expression (21) for the profile log-
likelihood, replace the sums overk = 1, . . . , n by sums overk ∈ K. Start the
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iteration withK = {1, . . . , n}. This results in an initial parameter estimateâ =
(â1, b̂1, . . . , âd, b̂d) and residuals

rk =
d∑
i=1

(ĥi(yki)− µ̂k)2, k = 1, . . . , n. (24)

Now partition the set{1, . . . , n} into 10 slicesTs, such thatT1 contains thosek
for which µ̂k is smaller than the 10%-quantile of thêµk, T2 those for whichµ̂k
is between the 10%- and 20%-quantile, and so on. LetQs be theqlts-quantile of
{rk|k ∈ Ts}. A new selectionK of putative non-outlying probes is found through

K =
⋃
s

{k ∈ Ts|rk ≤ Qs}. (25)

With this, compute new parameter estimates, and repeat the iteration. Stable esti-
mates are usually reached after less than 10 iterations.
The iteration procedure is a simple version of the method proposed in [12]. In
addition, rather than permitting forK any subset of{1, . . . , n} of size dnqltse,
we require thatK contains an equal amount of data from every slice, according
to Eqn. (25). This has the following advantage. Robust estimation involves the
weighting of data points as more or less reliable and thus implies a trade-off be-
tween being diverted by outliers, and ignoring important data. To find a good
compromise, it can be useful to consider further context information. Here, we
have invoked the notion that the fraction of outliers should be roughly the same
across the whole range of average intensitiesµk.

5 Results

5.1 Properties of the variance stabilizing transformation

The derivation of the variance stabilizing transformation (10) involves the approx-
imation (8). Fig.2 investigates how well this approximation holds for a familyYm
of random variables distributed according to

Ym = meη + ν, η ∼ N(0, σ2
η), ν ∼ N(0, 1) (26)

for parametersm,ση > 0. This corresponds to the right hand side of Eqn. (4).
In the notation of Eqn. (26), the variance stabilizing transformation (10) takes the
form h(y) = arsinh(cy) with c2 = exp(σ2

η) − 1. If m is large,Ym is dominated
by the multiplicative term,Ym ≈ meη, andh(Ym) ≈ log(Ym). The asymptotic
standard deviation ofh(Ym) form→∞ is thus Sd(log(meη)) = ση. In Fig.2, the
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behavior of Sd(h(Ym)) for finite values ofm is compared against the asymptotic
value for different choices of the parameterση. For each plot, the function was
numerically evaluated at 60 values ofm through Monte Carlo integration with106

samples. Even in the case ofση = 0.4, which corresponds to a probability of
5% of observing a relative error larger thane2·0.4 ≈ 2.2, the standard deviation
Sd(h(Ym)) does not depart from the asymptotic value by more than a factor of
1.035.

ση = 0.05

m

S
d(

h(
Y

m
))

σ η

0 20 40 60

0.
96
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00
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04
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96

1.
00

1.
04

Figure 2: Validation of the approximation used in Section3. For a family of ran-
dom variables distributed according to the error model (26), the plots show the
standard deviation of the transformed valuesh(Ym) = arsinh(cYm), divided by
the asymptotic valueση that is obtained form→∞.

An example for the effect of the variance stabilizing transformation (10) on real
data is shown in Fig.3. RNA from biopsies of adjacent parts of a kidney tumor
was labeled with red and green dyes, respectively, and hybridized to a cDNA mi-
croarray. Fluorescence intensities were measured with a laser scanner. Per-spot
summary intensity values were determined with the ArrayVision software (Imag-
ing Research Inc., St. Catharines, Ontario, Canada). A spot’s intensity was ob-
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Figure 3: Three different transformations applied to data from a cDNA microar-
ray. The top panel shows the difference∆yk = yk2 − yk1 between background-
subtracted and calibrated red and green intensities on they-axis versus the rank of
their sumyk1 + yk2 on thex-axis. Similarly, the middle plot shows the log-ratio
∆ log(yk) = log(yk2) − log(yk1) versus the rank of the sumlog(yk1) + log(yk2)
and the bottom plot shows∆h(yk) = h(yk2) − h(yk1) versus the rank of
h(yk1) + h(yk2). Plotting against the rank distributes the data evenly along the
x-axis and thus facilitates the visualization of variance heterogeneity.
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tained by subtracting the median brightness of surrounding pixels from the median
of those within. The expression levels of almost all genes in the two samples are
expected to be unchanged. Thus, the vertical width of the band of points repre-
sents the scale of the distribution of differences. For the untransformed intensities
(upper plot), the width increases to the right, in accordance with the error model
described in Section2. For log-ratios (middle plot), the differences are largest at
the left end, for measurements of low intensity. The far left region of the plot cor-
responds to spots in which one or both of the intensities were smaller than 1, in
which case the logarithm was replaced by the value 0. While the log-ratios have an
interquartile range (IQR) of about0.2 in the high-intensity regime, the IQR is as
large as0.95 for the points with ranks 1500 to 2000. A constant IQR of about0.2
along the whole range of intensities is observed for the generalized log-ratio∆h
(bottom plot). Note that this value is the same as that in the high-intensity end of
the log-ratio plot, in agreement with the asymptotic relationship (14).
The marginal distribution of∆h is compared a against a normal distribution in
the quantile-quantile (QQ) plot Fig.4. While the distribution is roughly normal
in the center and approximately symmetric, its tails are heavier than normal. This
observation, which we have made on many data sets, motivates the use of normal
theory and the robust modification of Section4.

5.2 Simulation of data

To verify the computational feasibility of the estimator constructed in Section4
and to investigate its behavior for different sample sizes, we ran simulation studies.
Simulated data were generated according to model (11) with Lε = N(0, c2).
Values for the parametersµki were generated as follows. First, following [13], for
each genek a valueµk was drawn according to

µk = arsinh (mk) , 1/mk ∼ Γ(1, 1). (27)

The density of the reciprocalΓ(1, 1) distribution is shown in Fig.5. To model the
mixture of non-differentially and differentially expressed genes, indicatorspk ∈
{0, 1} were generated withP [pk = 1] = pdiff . For each gene withpk = 1 and
for each samplei ≥ 2 a factorski ∈ {−1, 1} was drawn withP [ski = 1] = pup

and an amplitudezki was drawn from the uniform distributionU(0, zmax). Thus,
pk indicates whether or not genek shows differential expression;ski, whether it is
up- or down-regulated in samplei compared to sample 1;zki, by how much. These
were combined to obtain

µk1 = µk

µki = µk + pkskizki, i ≥ 2. (28)

11Huber et al.: Variance stabilization of microarray data
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0 2 4 6 8

density of simulated  mk

Figure 5: Density of the reciprocalΓ distribution,1/mk ∼ Γ(1, 1). At the right
end, the plot is cut off at the 90%-quantile of the distribution.

Values for the calibration parametersai andbi were generated through

a1 = 0, a2, . . . , ad
iid∼ U(−∆a,∆a)

b1 = 1, b2, . . . , bd
iid∼ LN(0, 1),

where∆a = 0.95 roughly corresponds to the peak of the distribution shown in
Fig. 5, U(−∆a,∆a) is the uniform distribution on the interval[−∆a,∆a], and
LN(0, 1) is the log-normal distribution that corresponds to the standard normal
distribution. This yielded simulated datayki = ai + bi sinh(µki + εki).
The matrixyki of simulated data was presented to the software implementation
in the Bioconductor [14] packagevsn . It returns the estimated transformations
ĥ1, . . . , ĥd, parameterized bŷa1, . . . , âd andb̂1, . . . , b̂d (see Eqn. (10)), as well as
the matrix of transformed datâhki = arsinh((yki− âi)/b̂i). Generalized log-ratios
were calculated as

∆ĥki = ĥki − ĥk1 (29)

and compared to the true values

∆hki = hki − hk1, (30)
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simulation A B C D

number of probes n 384, . . . , 69120 9216 9216 9216
number of samples d 2 2, . . . , 64 2 2
proportion of
differentially expressed
genes

pdiff 0 0 0, . . . , 0.6 0.2

proportion of
up-regulated genes

pup - - 0.5, 1 0, . . . , 1

amplitude of differential
expression

zmax - - 2 2

trimming quantile qlts 0.5, 0.75, 1
asymptotic coefficient
of variation

c 0.2

Table 1: Simulation parameters.

with hki = µki + εki, by means of the root mean squared deviation

δ =

√√√√ 1
|κ|(d− 1)

d∑
i=2

∑
k∈κ

(∆ĥki −∆hki)2, (31)

whereκ is the set ofk for whichpk = 0.
For a given set of simulation parameters, this procedure was repeated multiple
times, resulting in a simulation distribution of the root mean squared errorδ. This
was used to obtain the error bars shown in Figs.6, 8, and9. The error bars are
centered at the mean and extend by twice the standard error of the mean in each
direction.

5.3 Simulation results

Four series of simulations were performed to investigate the influence of the num-
ber of probes, the number of samples, the proportion of differentially expressed
genes, and the choice of the trimming quantileqlts. The parameter settings are
summarized in Table1.
The dependence of the estimation errorδ on the number of probesn and the number
of samplesd was investigated in simulation series A and B. The results are shown
in Fig. 6. In the left plot, the number of probesn varies from 384 to 69120. From
the plot, a scaling of the root mean squared error approximately as

δ ∝ 1√
n

(32)
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Figure 6: Dependence of the estimation errorδ on the number of probesn (left
panel) and the number of samplesd (right panel), for three different choices of the
trimming quantileqlts. The dashed line in the left panel has a slope of−1/2 and
corresponds to a scalingδ ∝ 1/

√
n.

can be observed. In the right plot,d varies from 2 to 64, again with three different
values ofqlts. While δ does slightly decrease withd, the decrease is much slower
than that withn and does not show an obvious scaling such as (32). The difference
between the two plots may be explained by the fact that the number of parameters
of the transformations (10) is 2d. Thus, the number of data points per parame-
ter remains constant whend is increased, but increases proportionally whenn is
increased.
The dependence of the required computation time on the parametersn, d andqlts

is shown in Fig.7. The plots indicate a scaling approximately as

tCPU∝ n× d. (33)

The computation times were measured with the Bioconductor packagevsn version
1.0.3 andR version 1.6.1 on a DEC Alpha EV68 processor at 1 GHz. On this
system, the proportionality factor in (33) is about 2 ms.
The effect of the presence of differentially expressed genes on the estimation error
δ was investigated in simulation series C and is shown in Fig.8. With qlts = 1, i. e.,
without use of the robust trimming criterion,δ becomes large even in the presence
of only a few differentially expressed genes. Aspdiff increases, the estimation
error remains smaller with trimming at the median (qlts = 0.5) than at the 75%
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quantile (qlts = 0.75). Asymmetric situations (pup = 1, right panel) are worse than
symmetric ones (pup = 0.5, left panel), but still can be handled reasonably as long
as the proportion of differentially expressed genes is not too large.
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Figure 9: Estimation errorδ and biasθ for different values of the asymmetry pa-
rameterpup. Among the set of differentially expressed genes,pup is the fraction of
up-regulated and1− pup the fraction of down-regulated genes.

Another look at the influence of asymmetry between up- and down-regulated genes
is shown in Fig.9, which was obtained from simulation series D. Here,pdiff was
fixed at0.2. The right panel shows the average bias

θ =
1
|κ|
∑
k∈κ

(
∆ĥk2 −∆hk2

)
. (34)

The robust procedures (qlts = 0.5 and0.75) perform much better than the unrobust
one (qlts = 1). Bias θ and errorδ are smallest when the fractions of up- and
down-regulated genes are about the same. An interesting feature of Fig.9 is the
asymmetry of the plots about the vertical linepup = 0.5. The presence of up-
regulated genes has a somewhat stronger effect onδ and θ than that of down-
regulated ones. This appears to be related to the skewness of the distribution of
µk (see Eqn. (27)), and to the curvature of the function (10).
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6 Discussion

Models are never correct, but they may be useful. There is a trade-off between
the wish to describe as much detail as possible and the problem of overfitting.
Model (17) has two parameters per sample, an offsetai and a normalization fac-
tor bi, and one parameter for the whole experiment, the standard deviationσε. In
addition, we assume that for each non-differentially expressed genek the center of
the distribution of intensities is parameterized byµk for all samplesi. Many exten-
sions and variations of the model are possible. Instead of offsets and normalization
factors that are common for all measurements from a sample, print-tip-specific or
plate-specific parameters may be used [15]. Systematic differences between dif-
ferent production batches of arrays or reagents could be modeled by allowing for
different values ofµk in the different batches. Furthermore, we have assumed that
the standard deviations of the additive noise terms for different samples are related
to each other via Sd(νki) = const. We find this to be an acceptable approximation
for the data we have encountered, but other relationships, such as Sd(ν̄ki) = const.
or Sd(νki) = λi with further parametersλi could also be appropriate.
Error modeling and calibration depend on the particularities of the technologies
used. For this article, we have simply considered the probe intensities as given, set-
ting aside important questions such as how the labeling and detection are realized
and how the probe intensities are obtained from the fluorescence images. Whether
or not the intensities measured from an experiment accord to the assumptions laid
out in Section2 has to be verified case by case; however, we have generally found
good agreement with data from two-color spotted cDNA arrays, from radioactive
nylon membranes, and from Affymetrix genechips. An advantage of the modeling
approach compared to a heuristic, algorithm-oriented approach is that it provides
criteria for quality control: by explicitly stating the assumptions made on the data,
insufficient data quality can be detected by statistical tools such as residual analy-
sis.
On cDNA arrays, typically each probe is sensitive for a distinct gene transcript.
The calibrated and transformed intensities may be directly used as a measure for
the abundance of transcripts in the samples. On Affymetrix genechips, multiple
oligonucleotides of potentially different specificity and sensitivity probe for the
same transcript. There, we recommend to use our method on the individual probe
intensities. Approaches to the question of how these then can be combined into
per-gene summary values are described in the references [16, 17, 18].
The computation time consumed by our software implementation is generally too
large for interactive use. For example, withn = 40000 probes,d = 100 samples
and a proportionality factor of 2 ms in Eqn. (33), tCPU≈ 2h. The time-critical part
of the computations is the iterative likelihood optimization. There are two ways to
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reduce the time: First, the proportionality factor could be reduced by implement-
ing code in C instead of R. Second, sublinear scaling can be achieved instead of
Eqn. (33) by not using the data from all probes, but only from a (quasi-)random
subset.

From the point of view of the user, two important issues are interpretability and
bottom-line performance. In these respects, the method presented here needs to be
compared against established approaches that are based on the logarithmic trans-
formation and the calculation of (log-)ratios. A comparison on real data showed
higher selectivity and sensitivity for the idenfication of differentially expressed
genes [3]. The (log)-ratio has, at first sight, the advantage that it can be sim-
ply and intuitively interpreted in terms of “fold change”. However, the value of
the log-ratio is highly variable or may be undefined when either the numerator
or the denominator are close to zero. Since many microarray data sets include
genes that are not or only weakly expressed in some of the conditions of interest,
the significance of fold changes can be difficult to assess for a large and poten-
tially important part of the data. Furthermore, many authors have noted a need
for non-linear normalization transformations to be applied in conjunction with the
log-transformation [15, 18, 19, 20]. These have the goal of removing an intensity
dependent bias from the log-ratios. They are often implemented through a scat-
terplot smoother or a local regression estimator. The result of that has no longer a
simple interpretation in terms of fold changes.
The approach presented in this paper offers a rational and practicable solution to
these problems. Through the criterion of variance stabilization, we arrive at a trans-
formation that corresponds to the logarithm when the intensity is well above back-
ground, but has a smaller slope for intensities close to zero. Thus, the generalized
log-ratio∆h coincides with the usual log-ratio∆ log when the latter is meaning-
ful, but is shrunk towards zero when the numerator or denominator are small. Non-
linear calibration transformations are often motivated by the curvilinear appearance
of the scatterplot on the log-log scale. This may be caused, for example, by differ-
ences in the overall background between different arrays or color channels. In that
case, these differences may also be modeled by the family of transformations (10),
which allow different offsetsai for different arrays or colorsi. An advantage of
this over calibration by local regression is that it does not depend on the choice of
a smoothing bandwidth, and that the offsetsai and scaling factorsbi are easier to
interprete.
While our approach approximately removes the intensity-dependence of the vari-
ance, this does not necessarily mean that the variance of the data for all genes is
the same. There may still be technical or biological reasons for the variance of
one gene being different from that of another, or even from itself under a differ-

19Huber et al.: Variance stabilization of microarray data

Produced by The Berkeley Electronic Press, 2004



ent biological condition. For instance, the tightness of regulatory control could be
different for a highly networked transcription factor than for a protein with mainly
structural function. However, whether or not such gene- or condition-specific vari-
ances play a role, in any case the removal of the intensity-dependence should be
advantageous for subsequent analyses.
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