- 1. Sea $\{X, X_{\alpha} \ (\alpha \in I)\}$ v.a. independientes. Probar que X es independiente de $\mathcal{F} = \mathcal{U}(X_{\alpha}, \ \alpha \in I)$.
- 2. Sea (X_n, \mathcal{F}_n) una Martingala. Considerar $\mathcal{U}_n = \mathcal{U}(X_1, \dots, X_n)$. Probar que (X_n, \mathcal{U}_n) es una Martingala.
- 3. Sean $\xi_1, \ldots, \xi_n, \ldots$ v.a. i.i.d. con $P(\xi_i = 1) = p$, $P(\xi_i = -1) = q$. Sea $S_n = \sum_{i=1}^n \xi_i$. Probar que

$$X_n = \left(\frac{q}{p}\right)^{S_n}$$
 e $Y_n = S_n - n(p-q)$

son Martingalas.

4. Sean $\xi_1, ..., \xi_n, ...$ v.a. i.i.d. con $P(\xi_i = 0) = P(\xi_i = 2) = 1/2$. Considerar

$$X_n = \prod_{i=1}^n \xi_i.$$

Probar que X_n es una Martingala y que no existe ξ tal que

$$X_n = E(\xi | \mathcal{F}_n)$$
 con $\xi \ \mathcal{U}(X_i, i \ge 1)$ medible.

Sugerencia: si $E(\xi|\mathcal{F}_n) \to Y$ entonces $Y = \xi$.

5. Sean $(X_n, \mathcal{F}_n)_{n\geq 1}$ una Martingala e $\{Y_n\}_{n\geq 1}$ un proceso tal que $|Y_n|\leq C_n, Y_n$ es \mathcal{F}_{n-1} medible. Sea $X_0=0$ y consideremos

$$M_n = \sum_{k=1}^n Y_k (X_k - X_{k-1}).$$

Probar que (M_n, \mathcal{F}_n) es una Martingala.

- 6. Sea $W(\cdot)$ un movimiento Browniano unidimensional. Mostrar que es una Martingala.
- 7. Sea $W(\cdot)$ un movimiento Browniano unidimensional. Mostrar que

$$E(W^{2k}(t)) = \frac{(2k)!t^k}{2^k k!}.$$

- 8. Probar que si $\mathbf{W}(\cdot)$ es un movimiento Browniano n-dimensional, entonces también lo son
 - a) $\mathbf{W}(t+s) \mathbf{W}(s)$ para todo $s \ge 0$.
 - b) $c\mathbf{W}(t/c^2)$ para todo c>0 ("rescale Browniano").

9. Sea $W(\cdot)$ un movimiento Browniano unidimensional. Mostrar que

$$\lim_{k \to \infty} \frac{W(k)}{k} = 0 \qquad \text{casi seguramente.}$$

Sugerencia: Fijar $\varepsilon>0$ y definir el evento $A_k:=\{|\frac{W(k)}{k}|\geq\varepsilon\}$ y aplicar Borel-Cantelli.

10. Sea $W(\cdot)$ un movimiento Browniano unidimensional. Definimos

$$\tilde{W}(t) := \begin{cases} tW\left(\frac{1}{t}\right) & t > 0, \\ 0 & t = 0. \end{cases}$$

Probar que $\tilde{W}(t) - \tilde{W}(s) \sim N(0, t - s)$ para tiempos $0 \le s < t$.

- 11. Sea $\tilde{W}(\cdot)$ como en el ejercicio anterior. Usar la desigualdad de Doob para probar que $\tilde{W}(\cdot)$ es continuo en 0 casi seguramente (también tiene incrementos independientes y es por lo tanto un movimiento Browniano).
- 12. Sea $X(t) := \int_0^t W(s) ds$, donde $W(\cdot)$ es un movimiento Browniano. Probar que

$$E(X^2(t)) = \frac{t^3}{3} \qquad \forall t > 0.$$

13. Sea X(t) como en el ejercicio anterior. Probar que

$$E(e^{\lambda X(t)}) = e^{\frac{\lambda^2 t^3}{6}} \qquad \forall t > 0.$$

14. Sea $U(t) := e^{-t}W(e^{2t})$, $(W(\cdot))$ es un movimiento Browniano unidimensional). Mostrar que

$$E(U(t)U(s)) = e^{-|t-s|}$$
 para todo $-\infty < s, t < \infty$.

- 15. Sea $0 < \gamma \le 1$.
 - a) Mostrar que si $f:[0,T]\to\mathbb{R}^n$ es uniformemente Hölder continua con exponente γ , también lo es para cada exponente $0<\delta<\gamma$.
 - b) Probar que $f(t)=t^{\gamma}$ es uniformemente Hölder con exponente γ en el intervalo [0,1]
- 16. Sea $0 < \gamma < \frac{1}{2}$. Si $W(\cdot)$ es un movimiento Browniano unidimensional, entonces para casi todo ω existe una constante $K = K(\omega)$ tal que

$$(*) \qquad |W(t,\omega)-W(s,\omega)| \leq K|t-s|^{\gamma} \qquad \text{ para todo } 0 \leq s,t \leq 1.$$

Probar que no existe K tal que (*) valga para casi todo ω .

- 17. Probar que $I(t) := W^2(t) t$ es una martingala. Sugerencia: $W^2(t) = (W(t) - W(s))^2 - W^2(s) + 2W(t)W(s)$. Tomar esperanza condicional respecto de W(s), la historia de $W(\cdot)$, y después respecto e la historia de $I(\cdot)$.
- 18. Supongamos que $X(\cdot)$ es una martingala, $\Phi: \mathbb{R} \to \mathbb{R}$ convexa y $E(|\Phi(X(t))|) < \infty$ para todo $t \geq 0$. Mostrar que $\Phi(X(\cdot))$ es una submartingala.