Ecuaciones Diferenciales Ordinarias Primer parcial 25 de mayo de 2005

1. Sean $f_n, f: \mathbb{R}^n \to \mathbb{R}^n$ funciones globalmente Lipschitz tales que $f_n \to f$ uniformemente y sean $x_n, x_0 \in \mathbb{R}^n$ tales que $x_n \to x_0$. Sean $u_n(t)$ y u(t) las soluciones de

$$\begin{cases} \dot{x} = f_n(x) \\ x(0) = x_n \end{cases}$$
 y
$$\begin{cases} \dot{x} = f(x) \\ x(0) = x_0 \end{cases}$$

respectivamente.

- a) Probar que $u_n \to u$ uniformemente sobre compactos.
- b) Si $f_n(x_n) = 0$ y x_n es (asintóticamente) estable para f_n , ¿es x_0 (asintóticamente) estable para f?
- 2. Considerar el sistema

$$\begin{cases} \dot{x}_1 &= \frac{1}{1+x_n} + \alpha_1 x_1, \\ \dot{x}_2 &= x_1 + \alpha_2 x_2, \\ &\vdots \\ \dot{x}_n &= x_{n-1} + \alpha_n x_n. \end{cases}$$

Donde $\alpha_i > 0$, $1 \le i \le n$. Hallar los equilibrios y estudiar su estabilidad.

- 3. Sea $\Phi(t)$ una matriz de $n \times n$ de funciones C^1 . Supongamos que $\Phi(0) = Id$ y $\Phi(t+s) = \Phi(t)\Phi(s)$ para todo $t, s \in \mathbb{R}$. Probar que existe A tal que $\Phi(t) = e^{tA}$.
- 4. a) Sea A(t) una matriz de $n \times n$ de funciones continuas en un intervalo de \mathbb{R} . Si para todo t

$$\left[\int_{t_0}^t A(s)ds\right]A(t) = A(t)\left[\int_{t_0}^t A(s)ds\right] \tag{1}$$

entonces $\Phi(t) = e^{\int_{t_0}^t A(s)ds}$ es una matriz fundamental de $\dot{x} = A(t)x$.

- b) Probar que si $A(\cdot)$ verifica A(t)A(s) = A(s)A(t) para todo t, s > 0, entonces A satisface (1).
- 5. Considerar el sistema

$$\begin{cases} \dot{x} = -xy + x^3 - 4x \\ \dot{y} = -y^2 + x^2y - y \end{cases}$$

- a) Verificar que \mathbb{R}^2_+ es positivamente invariante.
- b) Hallar todos los equilibrios en \mathbb{R}^2_+ y estudiar su estabilidad.
- c) Probar que $t^+(x,y) = +\infty$ para todo $(x,y) \in \mathbb{R}^2_+$.
- d) Hallar un conjunto compacto, conexo de interior no vacío que no es un rectángulo, positivamente invariante.

Por favor: escriban prolijo:-)