LA FUNCIÓN EXPONENCIAL

La intención de esta sección es (re)construir la noción de función exponencial a partir del sistema dinámico implícito en el proceso de capitalización continua, tal como lo hiciera Euler en su tiempo.

Preliminares algebraicos

Ejercicio 1 Sea $A: I \to \mathbb{R}^{m \times m}$ una curva C^1 demostrar que $\frac{d}{dt}(\det A) = \sum \det [a_1 \cdots a_i \cdots a_n]$, donde a_i representa la columna j de A.

Ejercicio 2 En el ejercicio anterior verificar que si $A: I \to GL(m)$ y B(t) es la matriz tal que $a_j = \sum b_j^i(t) a_i$ entonces $\frac{d}{dt}(\det A) = \text{Tr}(B) \det A$. Dar una interpretación geométrica.

Ejercicio 3 Usar el ejercicio (1) para demostrar la siguiente identidad

$$\det \mathbb{I} + \delta A = 1 + \operatorname{Tr}(A)\delta + o(\delta), \tag{1}$$

donde $\delta \ll 1$ y $A \in \mathbb{R}^{m \times m}$.

Notación: Para $A \in \mathbb{R}^{m \times m}$ notaremos $\Sigma(A) = \{\lambda \in \mathbb{C} : \lambda \text{ es autovalor de } A\}$. Este conjunto será llamado espectro de A.

Ejercicio 4 Usando que $\Sigma(\mathbb{I} + \delta A) = 1 + \delta \Sigma(A)$ –con los abusos de notación correspondientes– dar otra demostración de la identidad (1).

Construyendo la definición

Ejercicio 5 Usar la linealidad del campo f(t,x) = A(t)x para verificar que el flujo es lineal en el dato inicial y concluir que bastará con resolver el caso matricial tomando como dato inicial la matriz identidad.

Consideremos entonces, para $A \in \mathbb{R}^{m \times m}$, el problema de valores iniciales

$$\begin{cases} \frac{d}{dt}X = AX \\ X(0) = \mathbb{I}, \end{cases} \tag{2}$$

y llamemos $U_A: I \to \mathbb{R}^{m \times m}$ a la única solución.

Ejercicio 6 Verificar que, cualquiera sea $x_0 \in \mathbb{R}^m$, la única solución del problema

$$\begin{cases} \frac{d}{dt}z = Az \\ z(0) = x_0, \end{cases}$$

está dada por $x(t) = U_A(t) x_0$.

Observación 1 En el ejercicio anterior no se asume que A sea constante.

Ejercicio 7 Usar el ejercicio 1 para demostrar la siguiente identidad

$$\frac{d}{dt}\det U_A(t) = \operatorname{Tr}(B)(t)\det U_A(t) \tag{3}$$

y concluir det $U_A(t) = e^{\int_0^t \operatorname{Tr}(B)(s) ds}$.

Notación: El conmutador entre dos matrices será notado [A:B] := AB - BA.

Ejercicio 8 Verificar que $z(t) = [A:U_A](t)$ satisface $\dot{z} = Az$ y usar la unicidad de la solución para demostrar que $[A:U_A] = 0$.

Ejercicio 9 Usar el ejercicio anterior para demostrar la siguiente identidad

$$\Sigma(U_A) = e^{\Sigma(A)}$$
.

Ejercicio 10 Sea B una matriz que conmuta con A.

- Usar la idea del ejercicio 8 para demostrar que B conmuta con U_A .
- Demostrar que U_B conmuta con U_A .
- Concluir la siguiente identidad

$$U_{A+B} = U_A U_B. (4)$$

Ejercicio 11 Mediante el cambio de variable $t \rightsquigarrow -t$ verificar que

$$U_B(-t) = U_{-B}(t). (5)$$

Ejercicio 12 Sea $\lambda \in \mathbb{R}$ cualquiera, verificar $U_{\lambda A}(t) = U_A(\lambda t)$

Ejercicio 13 Usar la desigualdad $\langle x; Ax \rangle \leq ||A|| \, ||x||^2$ y el ejercicio 11 de la práctica 2 para verificar que U_A está definida globalmente.

Ejercicio 14 Propiedades de grupo

En este ejercicio tenemos que asumir que A es una matriz constante. En tal caso, el sistema (2) resultará autónomo.

• Demostrar la identidad

$$U_A(s+t) = U_A(s) U_A(t) = U_A(t) U_A(s)$$
(6)

■ Demostrar la propiedad $U_A : \mathbb{R} \to GL(m)$. Sugerencia: observar la relación que existe entre las identidades (6), (4) y (5).

Observación 2 La identidad (6) es válida en cualquier sistema autónomo.

Ejercicio 15 Primer expresión numérica

Aquí también asumiremos que A es constante.

- Usar la ecuación diferencial, ver (2), para verificar $\frac{d^n}{dt^n}U_A(0)=A^n$.
- Usar que $||A^n|| \le ||A||^n$ para verificar que la serie de Taylor $T_A(t) = \sum \frac{A^n t^n}{n!}$ es convergente con radio de convergencia infinito.
- Usar que el radio de convergencia es infinito y A es constante para verificar que $\dot{T} = AT$ y obtener la representación en serie para $U_A(t)$

$$U_A(t) = \sum \frac{A^n t^n}{n!} \tag{7}$$

Ejercicio 16 Segunda expresión numérica

- Demostrar la desigual dad $\binom{n}{k} \le \frac{n^k}{k!}$
- Usar la desigualdad anterior para demostrar la segunda expresión numérica

$$U_A(t) = \lim_{n \to +\infty} \left(\mathbb{I} + \frac{t}{n} A \right)^n \tag{8}$$

- Demostrar que si ||B|| < 1 entonces $\mathbb{I} B \in GL(m)$. Sugerencia: usar la serie geométrica.
- Usar el resultado anterior para obtener la versión alternativa

$$U_A(t) = \lim_{n \to +\infty} \left[\left(\mathbb{I} - \frac{t}{n} A \right)^{-1} \right]^n \tag{9}$$

Ejercicio 17 Grupos y sus generadores

Hasta aquí hemos conseguido, para cada $A \in \mathbb{R}^{m \times m}$, una curva $U_A : \mathbb{R} \to GL(m)$ que verifica $U_A(s+t) = U_A(s) U_A(t)$ y $\frac{d}{dt} U_A(0) = A$. Veamos ahora la construcción recíproca.

Sea $V: \mathbb{R} \to GL(m)$ un morfismo de grupos que es derivable en el origen. La intención es demostrar que existe una matriz A para la cual $V = U_A$. Para ello proponemos.

- ullet Escribir el cociente incremental para la derivada de V a tiempo t.
- ullet Verificar que V es derivable en toda la recta.
- Obtener la ecuación diferencial que satisface V.
- Concluir que $V = U_{\dot{V}(0)}$.

NOTA: Se puede suponer que V sólo es continua en el origen y demostrar que el resultado sigue siendo válido, pero podemos dejarlo para otra oportunidad.

Definición 1 En el contexto de estos ejercicios, la curva V se llama grupo a un parámetro y la matriz A se llama generador infinitesimal.

Definición 2 Para una matriz cualquiera $A \in \mathbb{R}^{m \times m}$ el grupo a un parámetro generado por A será llamado función exponencial y será notada

$$e^{tA} := U_A(t).$$