ECUACIONES DIFERENCIALES ORDINARIAS - PRACTICA 2

Primer Cuatrimestre 2008

Existencia, unicidad, dominio de definición, dependencia delos parámetros, flujos.

- 1. Probar que las siguientes definiciones son equivalentes (cualquiera de las dos se puede tomar como la definición de una función localmente Lipschitz en la variable x en $J \times D$),
 - a) Para todo intervalo abierto $I \subset J$ y B bola abierta con $\overline{B} \subset D$ existe L > 0tal que para todo $t \in I$, $x_1, x_2 \in B$

$$|f(t,x_1) - f(t,x_2)| \le L|x_1 - x_2|.$$

b) Para todo $I\subset J$ y $\Omega\subset D$ ($\overline{\Omega}$ compacto) existe L>0 tal que para todo $t \in I, x_1, x_2 \in \Omega,$

$$|f(t, x_1) - f(t, x_2)| \le L|x_1 - x_2|.$$

Obs: En (b), I no tiene por qué ser un intervaloy Ω no tiene por qué ser una bola.

2. En cada una de las siguientes ecuaciones,

1)
$$\dot{x} = \frac{x}{t}$$
, $x(1) = 3$

1)
$$\dot{x} = \frac{x}{t}$$
, $x(1) = 3$ 2) $\log(x^2 + 1) + \frac{2x(t-1)}{x^2+1}\dot{x} = 0$, $x(2) = 0$

3)
$$\dot{x} = \frac{x}{2t}$$
, $x(9) = 2$

3)
$$\dot{x} = \frac{x}{2t}$$
, $x(9) = 2$ 4) $\dot{x} = \lambda x^2$, $\cos \lambda \in \mathbb{R}$ $x(t_0) = x_0$.

- a) Analizar la existencia y unicidad de la solución.
- b) Encontrar la o las posibles soluciones.
- c) Hallar (a, b) el intervalo maximal de definición de la solución.
- d) Analizar si existen los límites

(1)
$$\lim_{t \to a^+} x(t) = x_1$$

(2)
$$\lim_{t \to b^{-}} x(t) = x_2$$
.

- e) Estudiar si f(x,t) tiene singularidad en (x_1,a) o en (x_2,b) (considerar que x_1 y/o x_2 podrían ser ∞).
- a) La función nula es solución de 3.

$$y' = y^{1/3}$$
 $y(0) = 0$

en la semirecta x < 0. Definir dos prolongaciones distintas a todala recta real que sean solución del sistema.

- b) ¿Contradice a) el teorema de unicidad de solución?
- c) Encontrar otra ecuación de primer orden cuya solución no sea única.
- a) Probar que el problema

$$\begin{cases} \dot{x} = 1 + x^2 \\ x(0) = 0 \end{cases}$$

tiene solución en el intervalo maximal $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

b) Hallar el intervalo maximal de existencia de

$$\begin{cases} \dot{x} = x^p & \text{con } 0 0. \end{cases}$$

c) Probar que el intervalo maximal de existencia de

$$\begin{cases} \dot{x} = f(x) \\ x(t_0) = x_0. \end{cases}$$

es finito si y sólo si $\int_{x_0}^{\infty} \frac{1}{f(s)} ds < \infty$.

5. Sean $f, g : \mathbb{R} \to \mathbb{R}$ Lipschitz. Probar que el sistema

$$\begin{cases} \dot{x} = f(x), & x(0) = x_0 \\ \dot{y} = g(x)y, & y(0) = y_0 \end{cases}$$

tiene solución única en cualquier intervalo donde este definida. ¿Se puede quitar la hipótesis de que alguna de ellas sea Lipschitz?.

6. Sea $f = f(t, x, \mu)$ de clase C^1 con $t \in [-a_0, a_0] \subset \mathbb{R}$, $x \in U \subset \mathbb{R}^n$, $\mu \in V \subset \mathbb{R}^m$ y sea $(x_0, \mu_0) \in U \times V$. Probar que existe a > 0 y $\delta > 0$ tal que el problema de valores iniciales no autónomo

$$\begin{cases} \dot{x} = f(t, x, \mu) \\ x(0) = x_0 \end{cases}$$

tiene una única solución $x(t, y_0, \mu)$ con $u \in C^1(G)$ donde $G = [-a, a] \times B_{\delta}(x_0) \times B_{\delta}(\mu_0)$.

Sugerencia: ampliar el sistema con una nueva variable y tal que $\dot{y}=0$ e $y(0)=x_0$.

7. En las mismas hipótesis del ejercicio anterior, vea que el problema

$$\begin{cases} \dot{x} = f(x, t, \mu) \\ x(t_0) = x_0 \end{cases}$$

tiene una única solución $x(t, \tau, x_0, \mu)$ con $x \in C^1(Q)$ donde $Q = [-a, a] \times (t_0 - \delta, t_0 + \delta) \times B_{\delta}(x_0) \times B_{\delta}(\mu_0)$.

8. Sea $f \in C^1(J \times D \times \Lambda)$ con $D \subset \mathbb{R}^n$, $\Lambda \subset \mathbb{R}^m$. Sea $x(t, \xi, \lambda)$ la solución maximal de

$$\dot{x} = f(t, x, \lambda)$$
 , $x(t_0) = \xi$.

Encontrar los problemas de valores iniciales que satisfacen $\frac{\partial x}{\partial \lambda_i}$.

9. (Lema de Gronwall) Dada f continua y dos números positivos A y B tales que

$$0 \le f(x) \le A + B \int_{x_0}^x f(s) \, ds$$

entonces

$$f(x) \le A e^{B(x-x_0)}$$

10. Sean x(t) e y(t) respectivamente soluciones de los siguientes problemas de valores iniciales

$$\begin{cases} \dot{x} = f(t, x) \\ x(t_0) = x_0 \end{cases} \quad y \quad \begin{cases} \dot{y} = g(t, y) \\ y(t_0) = x_0 \end{cases}$$

Probar que si f y $g \in L^{\infty}$ entonces el flujo es continuo respecto al campo de velocidades (es decir que si el segundo miembro cambia poco, también variarán poco los flujos).

- 11. Probar que las siguientes formulas definen flujos globales en \mathbb{R}^2 y hacer un bosquejo del correspondiente diagrama de fases,
 - a) $\varphi(t,(x,y)) = (e^t x, e^t y)$
 - b) $\varphi(t,(x,y)) = (x,tx+y)$
 - c) $\varphi(t,(x,y)) = (e^{-t}x, e^{-t}(tx+y))$
- 12. Determinar el flujo inducido por el campo $x \mapsto x^2$ sobre $E = \mathbb{R}$. ¿Cuál es el dominio Ω del flujo y J(x) para $x \in \mathbb{R}$?. Si $\Omega_t := \{x \in E/(t,x) \in \Omega\}$, determinar Ω_t para $t \in \mathbb{R}$. Si $\varphi_t : \Omega_t \to E$, $\varphi_t(x) := \varphi(t,x)$, describir el comportamiento de las transformaciones φ_t y φ_{-t} .
- 13. Sea $\varphi : \mathbb{R} \times D \to D$ un flujo $\operatorname{con} D \subset \mathbb{R}^n$ abierto. Probar que, para todo $t \in \mathbb{R}$, $\varphi_t : D \to D$ es un homeomorfismo.
- 14. Sea $\varphi : \mathbb{R} \times D \to D$ un flujo y $p_0 \in D$. La función $\varphi(\cdot, p_0) : \mathbb{R} \to D$ es una curva continua que se llama órbita o trayectoria de p_0 . A veces también se llama órbita o trayectoria de p_0 al conjunto imagen de esa función que denotaremos

$$\mathcal{O}(p_0) = \{ \varphi(t, p_o) / t \in \mathbb{R} \}$$

Probar que dos órbitas distintas no se cortan.

- 15. Sea φ un flujo en \mathbb{R}^n . Probar que,
 - a) El conjunto de los puntos críticos es cerrado.
 - b) Si $\varphi(t,y) \to x$ cuando $t \to t^+(y)$ o $t \to t^-(y)$. Entonces x es un punto crítico.