ECUACIONES DIFERENCIALES ORDINARIAS - PRACTICA 3/ PARTE B Primer Cuatrimestre 2004

Sistemas Lineales

(1) Halle los subespacios estables, inestables y centrales $(E^s, E^u y E^c)$ del sistema lineal

$$(1) x' = Ax$$

para las siguientes matrices.

(a)
$$A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
 (b) $A = \begin{pmatrix} -1 & -3 \\ 0 & 2 \end{pmatrix}$ (c) $A = \begin{pmatrix} -1 & -1 \\ 1 & -1 \end{pmatrix}$
(d) $A = \begin{pmatrix} -1 & -3 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{pmatrix}$ (e) $A = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$

En cada caso, también esboce el diagrama de fases. ¿Cuáles de estas matrices define un flujo hiperbólico, e^{At} ?

- (2) Sea $A \in \mathbb{R}^{n \times n}$ y sea x(t) la solución de (1) con $x(0) = x_0$. Muestre que
 - (a) si $x_0 \in E^s \{0\}$ entonces $\lim_{t \to \infty} x(t) = 0$ y $\lim_{t \to -\infty} |x(t)| = \infty$;
 - (b) si $x_0 \in E^u \{0\}$ entonces $\lim_{t \to \infty} |x(t)| = \infty$ y $\lim_{t \to -\infty} x(t) = 0$;
 - (c) si $x_0 \in E^c \{0\}$ y A es semisimple, entonces existen constantes positivas m y M tales que, para todo $t \in \mathbb{R}$, $m \le |x(t)| \le M$.
- (3) Muestre que las únicas líneas invariantes para el sistema lineal (1) con $x \in \mathbb{R}^2$ son las líneas ax + by = 0 donde v = (-b, a) es un autovector de A.
- (4) Utilice el método de variación de las constantes para hallar la solución general del sistema

$$(2) x' = Ax + b(t)$$

donde $b: \mathbb{R} \to \mathbb{R}^n$ es continuo.

(5) Resuelva el sistema no homogéneo (2) con

$$A = \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}, \qquad b(t) = \begin{pmatrix} t \\ 1 \end{pmatrix}$$

y condición inicial x(0) = (1, 0).

(6) Pruebe el siguiente Teorema:

Sea $A \in \mathbb{R}^{n \times n}$ y sea $B(t) \in \mathbb{R}^{n \times n}$ continua para $t \ge t_0$.

Probar que si todos los autovalores de A tienen parte real negativa y que si $||B(t)|| \to 0 \ (t \to \infty)$, entonces las soluciones de

$$(3) x' = Ax + B(t)x$$

verifican $x(t) \to 0 \ (t \to \infty)$ (y luego, 0 es asintóticamente estable).

(7) Determine la estabilidad de x = 0 para el sistema (3) si

$$A = \begin{pmatrix} -3 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & -1 \end{pmatrix}, \qquad B(t) = \begin{pmatrix} e^{-t^2} & 0 & 0 \\ te^{-t^2} & t^2 e^{-t^2} & 0 \\ 0 & 0 & e^{-t^2} \end{pmatrix}.$$

(8) Para qué valores de a es la solución x = 0 asintóticamente estable o inestable (ignore los casos con autovalores de parte real cero) para el siguiente sistema

$$x' = A(t)x$$

donde

$$A(t) = \begin{pmatrix} e^{-t} & \frac{t^2+1}{t^2} & e^{-t} \\ \frac{\sin t}{t^{3/2}} & 0 & 1+e^{-t} \\ (2-a)\frac{1-t}{t} & -1 & a\frac{1-t}{t} \end{pmatrix}.$$