Elementos de Espacios de Banach

2do cuatrimestre del 2006

Práctica 1 - Topologías débiles

- 1. a) Probar que la esfera S_X es w-densa en la bola B_X .
 - b) Probar que si X tiene dimensión infinita, la topología débil en X no es metrizable (Sugerencia: para cada n, 0 está en la clausura débil de nS_X).
- 2. a) Probar que el "polinomio" $P:\ell_2\to\mathbb{K}$ dado por $P(x)=\sum_{n=1}^\infty\frac{x_n^2}{n}$ no es débilmente continuo en 0.
 - b) Probar que $P|_{B_{\ell_2}}$ es débilmente continuo en B_{ℓ_2} (y, en particular, en 0).
- 3. a) Sea $(x_n)_n \subset \ell_2$ una sucesión que converge débilmente a 0. Entonces existe una subsucesión $(x_{n_k})_k$ cuyos promedios tienden a 0 en norma. (Sugerencia: al elegir x_{n_k} , considerar los x_{n_i} anteriores como funcionales lineales en ℓ_2).
 - b) Observar que el resultado vale también si cambiamos 0 por cualquier $x \neq 0$.
- 4. Una función $P: X \to \mathbb{K}$ es un polinomio homogéneo de grado k si existe una aplicación k-lineal $A: \underbrace{X \times \cdots \times X}_{n} \to \mathbb{K}$ tal que $P(x) = A(x, \dots, x)$.

Notar que P en el ejercicio 2) es un polinomio homogéneo.

Si $X = \mathbb{K}^n$, todo polinomio es de la forma

$$P(y) = \sum_{\alpha_1 + \dots + \alpha_n = k} a_{\alpha} y_1^{\alpha_1} \cdots y_k^{\alpha_k},$$

donde $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{N}_0^n$ es un multi-índice y $a_{\alpha} \in \mathbb{K}$ para cada α .

Utilizar este hecho para probar:

- a) Un polinomio $P:X\to\mathbb{K}$ es w-continuo en 0 si y solamente si es combinación algebraica de finitas funcionales lineales.
- b) Un polinomio $P:X\to\mathbb{K}$ es w-continuo en algún punto si y solamente si es combinación algebraica de finitas funcionales lineales.
- c) Un polinomio $Q: X' \to \mathbb{K}$ es w^* -continuo si y solamente si es combinación algebraica de finitas funcionales lineales en X' dadas por elementos de X.
- 5. Sea X un espacio de Banach, X' su dual y sea $\|\cdot\|_1$ una norma en X' equivalente a la norma dual. Probar que las siguientes afirmaciones son equivalentes:
 - i) Existe una norma $\|\cdot\|_0$ en X (equivalente a la original) tal que $\|\cdot\|_1$ es la norma dual de $\|\cdot\|_0$.
 - ii) El conjunto $\{x' \in X' : ||x'||_0 \le 1\}$ es w^* -cerrado.

- 6. Definimos en ℓ_1 la norma $||x||_1 = \sum_j |x_j| + 2 |\sum_j x_j|$.
 - a) ¿La norma $\|\cdot\|_1$ es equivalente a la norma usual?
 - b) ¿Existe alguna norma en c_0 de la cual $||x||_1$ es la norma dual?
- 7. \mathbb{R}^2 es, naturalmente, isomorfo a un subespacio propio de \mathbb{R}^3 con la norma que se nos ocurra. ¿Cuál es el dual de \mathbb{R}^2 ? ¿Cuál es el dual de \mathbb{R}^3 ? ¿Y esto a qué viene? A demostrar que la afirmación "si el espacio es más chico, el dual es más grande" es falsa.
- 8. Dado un operador continuo $T:X\to Y,$ el operador transpuesto $T':Y'\to X'$ está dado por $T'(y')=y'\circ T.$
 - a) Sea $S:Y'\to X'$ un operador acotado. S es el transpuesto de un operador de X a Y si y sólo si S es w^*-w^* continuo.

Decimos que un operador $T: X \to Y$ es débilmente compacto si $\overline{T(B_X)}$ es débilmente compacto en Y.

Probar:

- b) T es débilmente compacto si y sólo si la imagen de $T'': X'' \to Y''$ está contenida en Y.
- c) T es débilmente compacto si y sólo si T' es w^* -w continuo.
- d) T es débilmente compacto si y sólo si T' lo es.
- e) Deducir que X es reflexivo si y sólo si X' lo es.