Elementos de Espacios de Banach

2do cuatrimestre del 2006

PRÁCTICA 2 - SERIES - BASES DE SCHAUDER (PRIMERA PARTE)

- 1. Sea $S \subset X$ un subespacio de dimensión finita. Probar que existe una serie $\sum_{n=1}^{\infty} x_n$ en X tal que $SR(\sum_{n=1}^{\infty} x_n) = S$.
- 2. Dada la serie $\sum_{n=1}^{\infty} x_n$ en el espacio de Banach X, probar que son equivalentes:
 - i) $\sum_{n=1}^{\infty} x_n$ converge incondicionalmente.
 - ii) Existe un operador compacto $T: c_0 \to X$ tal que $T(e_n) = x_n$ para todo $n \in \mathbb{N}$.
 - iii) La serie $\sum_{n=1}^{\infty} a_n \ x_n$ converge para todo $(a_n)_n \in \ell_{\infty}$.

Nota: Un operador compacto siempre manda sucesiones débilmente de Cauchy en sucesiones de Cauchy (en norma). Probar i) \Rightarrow ii) para el caso real (es la implicación más difícil).

3. Sea $\{e_{\gamma}\}_{{\gamma}\in\Gamma}$ una base de Hamel de un espacio de Banach X de dimensión infinita. Probar que hay coordenadas respecto a esta base que no son continuas.

Sugerencia: sea $I \subset \Gamma$ numerable. Demostrar el resultado de dos maneras:

- a) el subespacio generado por $\{e_{\gamma}\}_{{\gamma}\in I}$ no es cerrado.
- b) A mano: si $I = \{n_k\} : k \in \mathbb{N}$, considerar $x = \sum_{i=1}^{\infty} \frac{e_{n_k}}{2^k \|e_{n_k}\|}$.
- 4. Sea $\{x_n\}_n$ una base de Schauder de X. Probar que existe una norma equivalente en X para la cual la base $\{x_n\}_n$ es monótona.
- 5. Sea $\{x_n\}_n$ una sucesión básica normalizada en X. Entonces:
 - a) $\{x_n\}_n$ es equivalente a la base canónica de c_0 si y sólo si existe C>0 tal que

$$\left\| \sum_{i=1}^{n} a_i x_i \right\| \le C \sup_{1 \le i \le n} |a_i|$$

b) $\{x_n\}_n$ es equivalente a la base canónica de ℓ_1 si y sólo si existe C>0 tal que

$$\sum_{i=1}^{n} |a_i| \le \left\| \sum_{i=1}^{n} a_i x_i \right\|$$

6. Probar que las bases canónicas de distintos ℓ_p no son equivalentes. Probar que en $L_p[0,1]$ hay sucesiones básicas equivalentes a la base canónica de ℓ_p $(1 \le p < \infty)$. ¿Se puede elegir la sucesión básica para que el subespacio generado por ella sea complementado en $L_p[0,1]$?

1

Elementos de Espacios de Banach

2do cuatrimestre del 2006

PRÁCTICA 2 - SERIES - BASES DE SCHAUDER (PRIMERA PARTE)

- 7. Sea $X = c_0$ o ℓ_p y consideremos la base canónica $\{e_n\}_n$ de X. Probar que:
 - i) toda base en bloque normalizada es equivalente a $\{e_n\}_n$;
 - ii) toda base en bloque normalizada genera un subespacio 1-complementado de X.
- 8. Sea $p \neq q$. Probar que ℓ_p no es isomorfo a ℓ_q ni a c_0 . ¿Puede ser ℓ_p isomorfo a un subespacio de ℓ_q ? ¿Y de c_0 ?
- 9. Sea $\{x_n\}_n$ una base de X y $\{x'_n\}_n$ la sucesión básica dual. Si $\{x_n\}_n$ es acotadamente completa, probar que X es isomorfo al dual del subespacio cerrado de X' generado por $\{x'_n\}_n$.

Decimos que una base $\{x_n\}_n$ es incondicional si cada vez que $\sum_k a_k x_k$ converge, lo hace incondicionalmente.

- 10. Supongamos que la base $\{x_n\}_n$ de X cumple que cada vez que $\sum_k a_k x_k$ converge, lo hace absolutamente. Probar que X es isomorfo a ℓ_1 .
- 11. Probar que $\{x_n\}_n$ es una base es incondicional si y sólo si genera un subespacio denso y existe K > 0 tal que si A y B son subconjuntos finitos no vacíos de \mathbb{N} y si $(a_k)_k$ es una sucesión de escalares,

$$\left\| \sum_{k \in A} a_k x_k \right\| \le K \left\| \sum_{k \in A \cup B} a_k x_k \right\|.$$

- 12. Sea X un espacio de Banach con base incondicional $\{x_n\}$.
 - i) Si $\{x_n\}$ no es acotadamente completa, entonces X contiene un subespacio isomorfo a c_0 ;
 - ii) Si $\{x_n\}$ no es achicante, entonces X contiene un subespacio isomorfo a ℓ_1 .
 - iii) X es reflexivo si y sólo si X no contiene subespacios isomorfos a c_0 ni a ℓ_1 . Sugerencia: usar los ejercicios 4) y 5).

Sugerencia para el ejercicio 2, i) \Rightarrow ii):

- 1) Probar que dado $\varepsilon > 0$, existe n_0 tal que $\left\| \sum_{k \geq n_0} \alpha_k x_k \right\| < \varepsilon$ para toda elección de $\alpha_i = \pm 1$.
- 2) Observar que todo elemento de c_0 con finitas coordenadas no nulas se puede escribir como combinación convexa de elementos cuyas coordenadas son 1, -1 ó 0.
- 3) Mostrar que T se aproxima (en norma) por sus truncamientos.