Métodos de Elementos Finitos y Aplicaciones

Teoremas de Extensión para espacios de Sobolev

Formulación del problema

Dado un dominio abierto $\Omega \subseteq \mathbb{R}^N$ y el espacio de Sobolev $W^{1,p}(\Omega)$ correspondiente, se busca extender a las funciones de $W^{1,p}(\Omega)$ a todo \mathbb{R}^N de modo que resulten funciones de $W^{1,p}(\mathbb{R}^N)$. Más precisamente, el problema consiste en definir (si es posible) un operador lineal E tal que

$$E: W^{1,p}(\Omega) \to W^{1,p}(\mathbb{R}^N) \tag{1}$$

con

$$||Eu||_{W^{1,p}(\mathbb{R}^N)} \le C||u||_{W^{1,p}(\Omega)}$$
 (2)

para toda $u \in W^{1,p}(\Omega)$. La existencia de este operador dependerá de la geometría de $\partial\Omega$. En particular, existen operadores de extensión para dominios Lipschitz y no más que eso. Es decir, hay dominios que no son Lipschitz en donde no se puede definir un operador de extension. En estas notas vamos a exponer la prueba para el caso de dominios de clase C^1 y comentaremos algunos aspectos de las pruebas del caso Lipschitz.

Algunos ejemplos

Extensión por cero:

Definición 1 Dada una función $f: \Omega \to \mathbb{R}$ definida en un dominio Ω , se define su "extensión por cero" como:

$$\overline{f}(x) = \begin{cases} f(x) & \text{si} & x \in \Omega \\ 0 & \text{si} & x \in \Omega^c \end{cases}$$
 (3)

Tenemos el siguiente lema.

Lema 2 Sea Ω un abierto arbitrario. Consideremos $u \in W^{1,p}(\Omega)$ y tomemos una función suave $\varphi \in C_0^1(\Omega)$. Entonces $\overline{\varphi u} \in W^{1,p}(\mathbb{R}^N)$,

$$\frac{\partial \overline{\varphi u}}{\partial x_i} = \overline{\varphi \frac{\partial u}{\partial x_i} + \frac{\partial \varphi}{\partial x_i} u} \tag{4}$$

y además existe una constante C > 0 tal que

$$\|\overline{\varphi u}\|_{W^{1,p}(\mathbb{R}^N)} \le C\|u\|_{W^{1,p}(\Omega)} \qquad 1 \le i \le N \tag{5}$$

La misma conclusión puede obtenerse si en vez de tomar $\varphi \in C_0^1(\Omega)$ se toma $\varphi \in C^{\infty}(\mathbb{R}^N) \cap L^{\infty}(\mathbb{R}^N)$ con $\nabla \varphi \in L^{\infty}(\mathbb{R}^N)^N$ y $sop(\varphi) \in \mathbb{R}^N \setminus \partial \Omega$. En ese caso, se obtiene que

$$\frac{\partial \overline{\varphi u}}{\partial x_i} = \varphi \overline{\frac{\partial u}{\partial x_i}} + \frac{\partial \varphi}{\partial x_i} \overline{u} \tag{6}$$

Demostraci'on:Dada $\psi\in C_0^\infty(\mathbb{R}^N),$ tenemos que

$$\int_{\mathbb{R}^N} \overline{\varphi u} \frac{\partial \psi}{\partial x_i} dx = \int_{\Omega} \varphi u \frac{\partial \psi}{\partial x_i} dx$$
 (7)

$$= \int_{\Omega} u \left(\frac{\partial \varphi \psi}{\partial x_i} - \frac{\partial \varphi}{\partial x_i} \psi \right) dx \tag{8}$$

$$= -\int_{\Omega} \frac{\partial u}{\partial x_i} \varphi \psi + u \frac{\partial \varphi}{\partial x_i} \psi \, dx \tag{9}$$

$$= -\int_{\Omega} \left(\varphi \frac{\partial u}{\partial x_i} + u \frac{\partial \varphi}{\partial x_i} \right) \psi \ dx \tag{10}$$

$$= -\int_{\mathbb{R}^N} \overline{\left(\varphi \frac{\partial u}{\partial x_i} + u \frac{\partial \varphi}{\partial x_i}\right)} \psi \ dx \tag{11}$$

La constante C se elige de modo que

$$C \ge \max \left\{ \|\varphi\|_{L^{\infty}}, \left\| \frac{\partial \varphi}{\partial x_i} \right\|_{L^{\infty}} : 1 \le i \le N \right\}$$
 (12)

Como consecuencia de este lema, tenemos un resultado de extensión. Supongamos que, para cierto $\Omega \subset \mathbb{R}^N$ podemos extender funciones de $W^{1,p}(\Omega)$ a $W^{1,p}(\tilde{\Omega})$ con $\Omega \subset\subset \tilde{\Omega}$. Podemos entonces encontrar una función suave $\varphi \in C_0^\infty(\Omega)$ tal que $\varphi(x) = 1$ para todo $x \in \Omega$. Entonces la función $\overline{\varphi u}$ es la extensión de u a $W^{1,p}(\Omega)$.

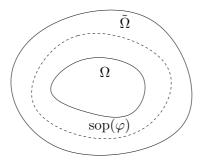


Figura 1: Extensión por cero

Se podría preguntar si la extensión por cero descripta arriba se puede hacer directamente, sin el cut-off suave. La respuesta es que no, por la misma razón que la funciones características no están en $W^{1,p}(\mathbb{R}^N)$. Veamos el caso de dimensión 1. Sea $\Omega=(a,b)$. Consideremos la función $u=\chi_{\Omega}$ y tratemos de extenderla por cero fuera. Sea φ una función test tal que $\operatorname{sop}(\varphi) \cap \Omega \neq 0$. Si \overline{u} está en $W^{1,p}(\mathbb{R})$, debe existir una derivada débil \overline{u}' tal que

$$\int_{\mathbb{R}} \overline{u}\varphi' \ dx = -\int_{\mathbb{R}} \overline{u}'\varphi \ dx. \tag{13}$$

Pero la primera integral es justamente

$$\int_{\mathbb{D}} \overline{u}\varphi' \ dx = \int_{a}^{b} \varphi' \ dx = \varphi(b) - \varphi(a) \tag{14}$$

Entonces, la derivada débil de \overline{u} , como distribución, satisface

$$\overline{u}'(\varphi) = \delta_a(\varphi) - \delta_b(\varphi) \tag{15}$$

donde δ_p es la distribución delta centrada en p. Concluimos que entonces $\overline{u} \notin W^{1,p}(\mathbb{R})$.

Un dominio no Lipschitz que no admite extensión

Consideremos el dominio $\Omega \subseteq \mathbb{R}^2$ definido como

$$\Omega = \{ (x, y) \in \mathbb{R}^2 : 0 < x < 1, |y| < x^{\gamma}, \gamma > 1 \}$$
(16)

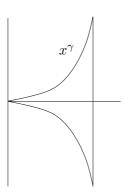


Figura 2: Dominio con cúspide exterior

Consideremos la función $u_{\varepsilon}(x,y) = x^{-\frac{\varepsilon}{p}}$ con $0 < \varepsilon < \gamma$. Entonces

$$\frac{\partial u_{\varepsilon}}{\partial x} = -\frac{\varepsilon}{p} x^{-\frac{\varepsilon}{p} - 1} \tag{17}$$

Por lo tanto,

$$\int_{\Omega} \left| \frac{\partial u_{\varepsilon}}{\partial x} \right|^{p} dx = \left(\frac{\varepsilon}{p} \right)^{p} \int_{0}^{1} \int_{-x^{\gamma}}^{x^{\gamma}} x^{-p(\frac{\varepsilon}{p}+1)} dx dy$$
 (18)

$$= \left(\frac{\varepsilon}{p}\right)^p 2 \int_0^1 x^{-p(\frac{\varepsilon}{p}+1)+\gamma} dx \tag{19}$$

La última integral es finita si $p < \gamma + 1 - \varepsilon$. Como $\gamma > 1$, concluimos que para cualquier p > 2 se puede elegir un ε tal que $u_{\varepsilon} \in W^{1,p}(\Omega)$. Si valiera un operador de extensión $E: W^{1,p}(\Omega) \to W^{1,p}(\mathbb{R}^N)$, tendríamos que Eu_e está en $W^{1,p}(\mathbb{R}^N)$. Pero sabemos que para \mathbb{R}^N vale el teorema de inmersión de Sobolev. Para p > 2, como $1 > \frac{2}{p} (k > \frac{N}{p})$ se tiene la inclusión $W^{1,p}(\mathbb{R}^N) \subset C(\mathbb{R}^N)$, lo que es imposible.

Extensión por reflexión (Nikolskij)

Notación

Vamos a trabajar en el espacio euclídeo \mathbb{R}^N . Escribimos a un punto típico de \mathbb{R}^N como

$$x = (x', x_N)$$
 con $x' \in \mathbb{R}^{N-1}$, $x' = (x_1, \dots, x_{N-1})$ (20)

Además,

$$\mathbb{R}_{+}^{N} = \{(x', x_{N}) : x_{N} > 0\}
Q = \{x \in \mathbb{R}^{N} : |x_{i}| < 1; 1 \le i \le N\}
Q_{+} = Q \cap \mathbb{R}_{+}^{N}
Q_{0} = Q \cap \{x_{N} = 0\}$$

Lema 3 Sea $u \in W^{1,p}(Q_+)$. Definitions

$$u^*(x', x_N) = \begin{cases} u(x', x_N) & \text{si} \quad x_N > 0\\ u(x', -x_N) & \text{si} \quad x_N < 0 \end{cases}$$
 (21)

Entonces $u^* \in W^{1,p}(Q)$ $y \|u^*\|_{W^{1,p}(Q)} \le 2\|u\|_{W^{1,p}(Q_+)}$

Demostración: Fijamos un poco más de notación. Dada $f:Q_+\to\mathbb{R},$ definimos

$$u^{\square}(x', x_N) = \begin{cases} f(x', x_N) & \text{si } x_N > 0\\ -f(x', -x_N) & \text{si } x_N < 0 \end{cases}$$
 (22)

Vamos a ver que u^* tiene derivadas débiles dadas por las siguientes fórmulas:

$$\frac{\partial u^*}{\partial x_i} = \left(\frac{\partial u}{\partial x_i}\right)^* \qquad 1 \le i \le N - 1$$

$$\frac{\partial u^*}{\partial x_N} = \left(\frac{\partial u}{\partial x_N}\right)^{\square} \tag{23}$$

Consideremos una función $\eta \in C^{\infty}(\mathbb{R})$ tal que $\eta(t) = 1$ si $|t| \geq 1$ y $\eta(t) = 0$ si $|t| \leq \frac{1}{2}$.

Figura 3: Bump

Definimos a partir de esta función la sucesión η_k por la fórmula $\eta_k(t) = \eta(kt)$.

Para verificar (23), consideremos $\varphi \in C_0^\infty(Q)$ y veamos primero el caso $1 \le i \le N-1$. Tenemos que ver que

$$\int_{Q} u^{*} \frac{\partial \varphi}{\partial x_{i}} dx = -\int_{Q} \left(\frac{\partial u}{\partial x_{i}} \right)^{*} \varphi dx \tag{24}$$

Reescribimos el lado izquierdo:

$$\int_{Q} u^{*} \frac{\partial \varphi}{\partial x_{i}} dx = \int_{Q_{+}} u \frac{\partial \varphi}{\partial x_{i}} dx + \int_{Q_{-}} u(x', -x_{N}) \frac{\partial \varphi}{\partial x_{i}} (x', x_{N}) dx$$

$$= \int_{Q_{+}} u \frac{\partial \varphi}{\partial x_{i}} dx + \int_{Q_{+}} u(x', x_{N}) \frac{\partial \varphi}{\partial x_{i}} (x', -x_{N}) dx$$

$$= \int_{Q_{+}} u \left(\frac{\partial \varphi}{\partial x_{i}} (x', x_{N}) + \frac{\partial \varphi}{\partial x_{i}} (x', -x_{N}) \right) dx$$

Si ponemos $\psi(x',x_N) = \varphi(x',x_N) + \varphi(x',-x_N)$, nos queda que

$$\int_{Q} u^{*} \frac{\partial \varphi}{\partial x_{i}} dx = \int_{Q_{+}} u \frac{\partial \psi}{\partial x_{i}} (x', x_{N}) dx$$
 (25)

Ahora tenemos una integral en Q_+ , pero no podemos pasar la derivada porque ψ en general no está en $C_0^{\infty}(Q_+)$. Lo que hacemos entonces es considerar $\Phi_k(x',x_N) = \eta_k(x_N)\psi(x',x_N)$.

Entonces,

$$\int_{Q_{+}} u \frac{\partial \Phi_{k}}{\partial x_{i}} dx = -\int_{Q_{+}} \frac{\partial u}{\partial x_{i}} \Phi_{k} dx$$
 (26)

Pero como $\frac{\partial \Phi_k}{\partial x_i}(x', x_N) = \eta_k(x_N) \frac{\partial \psi}{\partial x_i}(x', x_N)$, concluimos que

$$\int_{O_{+}} u \eta_{k} \frac{\partial \psi}{\partial x_{i}} dx = -\int_{O_{+}} \frac{\partial u}{\partial x_{i}} \eta_{k} \psi dx. \tag{27}$$

En el límite, obtenemos

$$\int_{Q_{+}} u \frac{\partial \psi}{\partial x_{i}} dx = -\int_{Q_{+}} \frac{\partial u}{\partial x_{i}} \psi dx.$$
 (28)

Volvemos a (25)

$$\int_{Q} u^{*} \frac{\partial \varphi}{\partial x_{i}} dx = - \int_{Q_{+}} \frac{\partial u}{\partial x_{i}} \psi dx$$
(29)

$$= -\int_{O_{+}} \frac{\partial u}{\partial x_{i}} \varphi \, dx - \int_{O_{+}} \frac{\partial u}{\partial x_{i}} \varphi(x', -x_{N}) \, dx \qquad (30)$$

$$= -\int_{Q_{+}} \frac{\partial u}{\partial x_{i}} \varphi \, dx - \int_{Q_{-}} \frac{\partial u}{\partial x_{i}} (x', -x_{N}) \varphi \, dx \qquad (31)$$

$$= -\int_{\mathcal{O}} \left(\frac{\partial u}{\partial x_i}\right)^* \varphi \ dx \tag{32}$$

Ahora veamos la derivada para el caso i=N. Tomemos otra vez $\varphi\in C_0^\infty(Q)$ y definamos $\psi(x',x_N)=\varphi(x',x_N)-\varphi(x',-x_N)$. Notemos que $\frac{\partial \psi}{\partial x_N}=0$ $\frac{\partial \varphi}{\partial x_N} + \frac{\partial \varphi}{\partial x_N}(x', -x_N)$ Razonamos de manera análoga al caso anterior.

$$\int_{Q} u^{*} \frac{\partial \varphi}{\partial x_{N}} dx = \int_{Q_{+}} u \frac{\partial \varphi}{\partial x_{N}} dx + \int_{Q_{-}} u(x', -x_{N}) \frac{\partial \varphi}{\partial x_{N}} (x', x_{N}) dx$$

$$= \int_{Q_{+}} u \frac{\partial \varphi}{\partial x_{N}} dx + \int_{Q_{+}} u(x', x_{N}) \frac{\partial \varphi}{\partial x_{N}} (x', -x_{N}) dx$$

$$= \int_{Q_{+}} u \left(\frac{\partial \varphi}{\partial x_{N}} (x', x_{N}) + \frac{\partial \varphi}{\partial x_{N}} (x', -x_{N}) \right) dx$$

$$= \int_{Q_{+}} u \frac{\partial \psi}{\partial x_{N}} (x', x_{N}) dx$$

Introducimos otra vez a la sucsión η_k . Si ponemos

$$\Phi_k(x', x_N) = \eta_k(x_N)\psi(x', x_N) \tag{33}$$

entonces $\Phi_k \in C_0^{\infty}(Q_+)$ y vale que

$$\int_{O_{\perp}} u \frac{\partial \Phi_k}{\partial x_N} \, dx = -\int_{O_{\perp}} \frac{\partial u}{\partial x_N} \Phi_k \, dx \tag{34}$$

Calculemos la derivada respecto de x_N de Φ_k :

$$\frac{\partial \Phi_k}{\partial x_N}(x', x_N) = \eta'_k(x_N)\psi(x', x_N) + \eta_k(x_N)\frac{\partial \psi}{\partial x_N}(x', x_N)
= k\eta'(kx_N)\psi(x', x_N) + \eta_k(x_N)\frac{\partial \psi}{\partial x_N}(x', x_N)$$

Entonces

$$\int_{Q_{+}} uk\eta'(kx_{N})\psi(x',x_{N}) dx + \int_{Q_{+}} u\eta_{k} \frac{\partial\psi}{\partial x_{N}} = -\int_{Q_{+}} \frac{\partial u}{\partial x_{N}} \Phi_{k} dx \qquad (35)$$

Veamos que en el límite, la primera integral se anula. Para eso observemos que

1. Como $\psi(x',0)=0$ y es suave, existe una constante M>0 tal que

$$|\psi(x', x_N)| \le M|x_N| \text{ en } Q \tag{36}$$

2. Por definición de η , tenemos que $\eta'(kx_N) = 0$ si $kx_N > 1$, de modo que la integral sólo se considera en la región $0 < x_N < \frac{1}{k}$.

Por lo tanto,

$$\left| \int_{Q_{+}} uk\eta'(kx_{N})\psi(x',x_{N}) \ dx \right| \leq kM \int_{0 < x_{N} < \frac{1}{k}} |x_{N}||u||\eta'(kx_{N})| \ dx(37)$$

$$\leq \|\eta'\|_{\infty} Mk \frac{1}{k} \int_{0 < x_{N} < \frac{1}{k}} |u| \ dx \qquad (38)$$

$$= C \int_{0 < x_{N} < \frac{1}{k}} |u| \ dx \to 0 \qquad (39)$$

Obtenemos entonces que

$$\int_{Q_{+}} u \frac{\partial \psi}{\partial x_{N}} dx = -\int_{Q_{+}} \frac{\partial u}{\partial x_{N}} \psi dx \qquad (40)$$

$$= -\left(\int_{Q_{+}} \frac{\partial u}{\partial x_{N}} \varphi dx - \int_{Q_{+}} \frac{\partial u}{\partial x_{N}} \varphi(x', -x_{N}) dx\right) (41)$$

$$= -\left(\int_{Q_{+}} \frac{\partial u}{\partial x_{N}} \varphi dx - \int_{Q_{-}} \frac{\partial u}{\partial x_{N}} (x', -x_{N}) \varphi dx\right) (42)$$

$$= -\int_{Q_{+}} \left(\frac{\partial u}{\partial x_{N}}\right)^{\Box} \varphi dx. \qquad (43)$$

De ahí que

$$\int_{Q} u^{*} \frac{\partial \varphi}{\partial x_{N}} dx = \int_{Q_{+}} u \frac{\partial \psi}{\partial x_{N}} dx = -\int_{Q} \left(\frac{\partial u}{\partial x_{N}} \right)^{\square} \varphi dx.$$

Notemos que la desigualdad para las normas es evidente de la fórmula de extensión.

Algunas consecuecias: Es inmediato que la misma demostración vale para $\Omega=\mathbb{R}^N_+$. También podemos combinar el Lema 3 con el Lema 2 y obtener resultados de extensión para dominios más generales.

Corolario 4 Sea $\Omega \subseteq \mathbb{R}^2$ un dominio rectangular. Entonces existe un operador de extensión en Ω .

Demostración: Consideremos el dominio $\tilde{\Omega}$ que resulta de reflejar sucesivamente a Ω en las cuatro direcciones. Sabemos que podemos extender a $\tilde{\Omega}$ por reflexión.

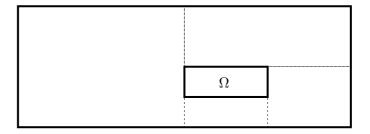


Figura 4: Cuatro reflexiones

Sea $\varphi \in C_0^{\infty}(\mathbb{R}^2)$ tal que sop $(\varphi) \in \tilde{\Omega}$ y además $\varphi(x) = 1$ para todo $x \in \Omega$. Entonces, si $u \in W^{1,p}(\Omega)$, el Lema 2 nos asegura que $\overline{\varphi u} \in W^{1,p}(\mathbb{R}^2)$ con una desigualdad de normas que da la continuidad del operador de extensión. Claramente $\overline{\varphi u}|_{\Omega} = u$

Teorema de extensión para dominios C^1

La idea es rectificar el borde localmente, de modo que se pueda aplicar el Lema 3. Las dos herramientas fundamentales para eso son el teorema de cambio de variables y las particiones de la unidad C^{∞} . Introducimos a continuación estos dos conceptos y damos una definición precisa de borde C^1 .

Definición 5 Sea $\Omega \subset \mathbb{R}^N$. Decimos que Ω es de borde C^1 si para todo $x \in \Gamma = \partial \Omega$ existe un entorno abierto U de x y una aplicación biyectiva $H: Q \to U$ tal que:

- 1. $H \in C^1(\overline{Q})$
- 2. $H^{-1} \in C^1(\overline{U})$
- 3. $H(Q_+) = U \cap \Omega$
- 4. $H(Q_0) = U \cap \Gamma$

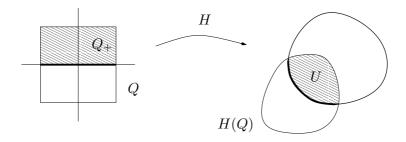


Figura 5: Borde C^1

Proposición 6 (Fórmula del cambio de variables) Sean Ω y Ω' dos abiertos en \mathbb{R}^N y $H: \Omega' \to \Omega$ una biyección tal que H, H^{-1} son de clase C^1 y las matrices jacobianas JH y JH^{-1} están en L^{∞} . Notamos con x a los elementos de Ω y H(y) = x.

 $Si\ u \in W^{1,p}(\Omega)\ (1 \le p < \infty)\ entonces\ u \circ H \in W^{1,p}(\Omega')\ y\ además\ vale$

$$\frac{\partial}{\partial y_i}(u \circ H)(y) = \sum_{j=1}^N \frac{\partial u}{\partial x_i}(H(y)) \frac{\partial H_j}{\partial y_i}(y)$$
(44)

Proposición 7 (Partición de la unidad) $Dado \Gamma \subset \mathbb{R}^N$ compacto y sean U_1, \ldots, U_k abiertos tales que $\Gamma \subset \bigcup_{i=1}^k U_i$.

Entonces existen functiones $\theta_0, \widetilde{\theta}_1, \ldots, \theta_k \in C^{\infty}(\mathbb{R}^N)$ tales que

- 1. $0 \le \theta_i \le 1$ para todo $i = 0, 1, \dots, k$ y $\sum_{i=1}^k \theta_i(x) = 1$ para todo $x \in \mathbb{R}^N$.
- 2. $\operatorname{sop}(\theta_i)$ es compacto $y \operatorname{sop}(\theta_i) \subset U_i$ para todo $i = 1, \ldots, k$.
- 3. $sop(\theta_0) \subseteq \mathbb{R}^N \setminus \Gamma$.

Además, si $\Gamma = \partial \Omega$ con Ω acotado, entonces $\theta_0|_{\Omega} \in C_0^{\infty}(\Omega)$. Esto NO quiere decir que el soporte de θ_0 esté contenido en Ω .

Podemos ahora enunciar y demostrar el teorema de extensión para dominios de clase C^1 .

Teorema 8 Sea Ω un dominio de clase C^1 con frontera $\Gamma = \partial \Omega$ acotada. Entonces existe un operador de extensión

$$E: W^{1,p}(\Omega) \to W^{1,p}(\mathbb{R}^N) \tag{45}$$

lineal y continuo tal que para toda $u \in W^{1,p}(\Omega)$

1. $Eu|_{\Omega}=u$

- 2. $||Eu||_{L^p(\mathbb{R}^N)} \le C||u||_{L^p(\Omega)}$
- 3. $||Eu||_{W^{1,p}(\mathbb{R}^N)} \le C||u||_{W^{1,p}(\Omega)}$

con C dependiendo sólo de Ω .

Demostración: Por hipótesis tenemos una colección finita de abiertos U_0, U_1, \ldots, U_k y aplicaciones biyectivas y suaves H_i (cambios de coordenadas C^1) definidos en Q tales que

- 1. $H_i \in C^1(\overline{Q})$
- 2. $H_i^{-1} \in C^1(\overline{U})$
- 3. $H_i(Q_+) = U_i \cap \Omega$
- 4. $H_i(Q_0) = U_i \cap \Gamma$

Podemos tomar una partición de la unidad C^{∞} subordinada a esa colección. Notamos con $\{\theta_i\}_{i=0}^k$ a dicha partición. Entonces tenemos que, para cada $u \in W^{1,p}(\Omega)$, si definimos $u_i = \theta_i u$, vale que

$$u = \sum_{i=0}^{k} u_i \tag{46}$$

La idea ahora es extender cada u_i a todo el espacio.

Empezamos por u_0 . Como sop $(u_0) \subset\subset \Omega$, podemos aplicar el Lema 2 y considerar $\overline{u_0}$ como la extensión, pues $\nabla \theta_0 = -\sum_{i=1}^k \nabla \theta_i$.

Para extender a cada u_i , $1 \leq i \leq k$, usamos los cambios de coordenadas para aplicar el Lema 3. Consideremos las funciones $\widetilde{u_i}: U_i \cap \Omega \to \mathbb{R}$ que resultan de restringir u a $U_i \cap \Omega$ (sin multiplicar por θ_i). Podemos trasladar entonces a Q. Definimos

$$v_i(y) = u(H_i(y))$$
 para $y \in Q_+$ (47)

Entonces, por la Proposición 6 $v_i \in W^{1,p}(Q_+)$ y por el Lema 3 podemos extender a todo $W^{1,p}(Q)$. Notemos con v_i^* a dicha extensión. Podemos volver ahora a U_i con H^{-1} . Definimos

$$w_i(x) = v_i^*(H_i^{-1}(x)) \qquad \text{para } x \in U_i$$
(48)

Veamos que w_i es la extensión buscada de \widetilde{u}_i , pero sólo a U_i .

- 1. $w_i \in W^{1,p}(U_i)$ por la fórmula del cambio de variables.
- 2. $w_i = u_i$ para $x \in U_i \cap \Omega$. En efecto, si $x \in U_i \cap \Omega$, entonces $H_i^{-1}(x) \in Q_+$. Entonces

$$w_i(x) = v_i^*(H_i^{-1}(x)) = v_i(H_i^{-1}(x)) = u(H_i(H_i^{-1}(x))) = u(x)$$
 (49)

3.

$$||w_i||_{W^{1,p}(U_i)} \le C||v_i^*||_{W^{1,p}(Q)} \le ||v_i||_{W^{1,p}(Q_+)} \le ||u_i||_{W^{1,p}(U_i \cap \Omega)}$$
(50)

Finalmente, podemos poner

$$\widehat{u}_i = \begin{cases} \theta_i(x)w_i(x) & x \in U_i \\ 0 & x \in \mathbb{R}^N \setminus U_i \end{cases}$$
 (51)

Entonces $\widehat{u}_i \in W^{1,p}(\mathbb{R}^N)$ para todo i y $\|\widehat{u}_i\|_{W^{1,p}(\mathbb{R}^N)} \leq C\|u\|_{W^{1,p}(U_i\cap\Omega)}$. Además, $\widehat{(u_i)} = u_i$ en Ω , pues

$$x \notin U_i \implies \widehat{u}_i(x) = 0 = u_i(x) \tag{52}$$

$$x \in U_i \Rightarrow \widehat{u_i}(x) = \theta_i(x)w_i(x) = \theta_i(x)\widetilde{u_i}(x) = u_i(x)$$
 (53)

La extensión de u es entonces

$$Eu = \overline{u_0} + \sum_{i=1}^k \widehat{u}_i \tag{54}$$

Algunas referencias y comentarios

- 1. Estas notas siguen la exposición de [Bre83]
- 2. Para una prueba del teorema de extensión en dominios Lipschitz, ver [EG92]. Esencialmente, se hace la prueba con la misma idea de "rectificar" el borde. La clave es que se desarrolla toda la teoría de diferenciación de funciones Lipschitz y se llega a una forma análoga del teorema de cambio de variables.
- 3. También hay una prueba para dominios Lipschitz en [Ste70]
- 4. En [AF03] se prueba para dominios aún más generales con la "propiedad uniforme del cono", que es más general que la propiedad de borde C^1 y Lipschitz.

Referencias

[AF03] Robert A. Adams and John J. F. Fournier, *Sobolev spaces*, second ed., Pure and Applied Mathematics (Amsterdam), vol. 140, Elsevier/Academic Press, Amsterdam, 2003.

- [Bre83] Haïm Brezis, Analyse fonctionnelle, Collection Mathématiques Appliquées pour la Maîtrise. [Collection of Applied Mathematics for the Master's Degree], Masson, Paris, 1983, Théorie et applications. [Theory and applications]. Versión en español de Alianza Editorial, 1984.
- [EG92] Lawrence C. Evans and Ronald F. Gariepy, Measure theory and fine properties of functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992.
- [Ste70] Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970.