Teoría de Homotopía 2006

Notas y Ejercicios Adicionales II: Complejos Simpliciales y Poliedros

Un poliedro es un espacio topológico que admite una triangulación por un complejo simplicial, esto va a implicar que podremos analizarlo combinatoriamente.

Los complejos simpliciales quedan definidos por sus vértices y símplices, donde cada n-simplex será un conjunto de n+1 vértices. A cada complejo simplicial K se le asociará un espacio topológico, que llamaremos la realización geométrica de K, que se construye pegando convexos determinados por los símplices. Concretamente:

- **1 Definición.** Un complejo simplicial K consiste en un conjunto de vértices V_K y un conjunto S_K cuyos elementos son subconjuntos finitos no vacíos de V_K (llamados símplices) con las siguientes propiedades:
 - 1. Todo vértice de K es un simplex (es decir, S_K contiene todos los subconjuntos de un elemento de V_K).
 - 2. Todo subconjunto no vacío de un simplex es un simplex (es decir, si $s \in S_K$ y $s' \subset s$ es no vacío, entonces $s' \in S_K$).

Si $s \in S_K$ tiene n+1 elementos, decimos que s es un n-simplex ó, equivalentemente, que $dim\ s=n$. Por lo tanto los vértices son los 0-símplices de K.

2 Ejemplos.

- 1. Si A es un conjunto no vacío cualquiera, podemos definir un complejo simplicial a partir de A tomando como vértices todos los elementos de A y como símplices todos los subconjuntos finitos y no vacíos de A.
- 2. Sea K el complejo simplicial con 3 vértices a,b,c y cuyos símplices son todos los subconjuntos no vacíos de $\{a,b,c\}$. A este complejo le asociaremos luego un triángulo lleno, es decir, el 2-simplex topológico (combinaciones convexas de 3 vértices afinmente independientes).
- 3. Sea K el complejo simplicial con 3 vértices a, b, c y cuyos símplices son todos los subconjuntos de $\{a, b, c\}$ salvo el conjunto $\{a, b, c\}$. A este complejo le asociaremos el borde del triángulo, es decir el borde del 2-simplex topológico.
- 4. Al complejo simplicial K con vértices $V_K = \mathbb{Z}$ y símplices

$$S_K = \{ \{n\}, \{n, n+1\}, n \in \mathbb{Z} \}$$

le asociaremos el espacio topológico \mathbb{R} .

Como los vértices de K son los 0-símplices, entonces K queda determinado por sus símplices y por abuso de notación escribiremos $s \in K$ si s es un simplex de K.

Si $s, s' \in K$ y $s' \subseteq s$ diremos que s' es una cara de s y si además $s' \neq s$ entonces es una cara propia de s.

Dado un simplex s de un complejo simplicial K podemos formar un nuevo complejo simplicial \overline{s} cuyos símplices son todas las caras de s y un complejo simplicial \dot{s} cuyos símplices son todas las caras propias de s.

El n-esqueleto de un complejo simplicial K es el complejo simplicial K^n que consiste en todos los símplices de K de dimensión menor o igual a n. Por ejemplo, el 0-esqueleto es el conjunto de vértices de K.

Decimos que K tiene dimensión n si tiene n-símplices pero no tiene símplices de dimensión n+1. Notar que esto implica que tampoco tiene símplices de dimensión mayor a n+1. Decimos que K tiene dimensión infinita si tiene n-símplices para todo n. Un complejo simplicial K es finito si tiene finitos vértices, o equivalentemente, si tiene finitos símplices.

3 Definición. Dado $n \geq 0$, el n-simplex topológico es el subespacio

$$\Delta^n = \{(t_0, t_1, \dots, t_n) \in \mathbb{R}^{n+1}, \sum t_i = 1, \ t_i \ge 0 \ \forall i\} \subset \mathbb{R}^{n+1}$$

Observar que todo punto $(t_0, t_1, \dots, t_n) \in \Delta^n$ puede ser visto como una función

$$\alpha: \{v_0, v_1, \dots, v_n\} \to I$$

tal que $\sum \alpha(v_i) = 1$, donde v_0, \dots, v_n son los vértices del simplex topológico. Esto motiva la siguiente definición.

- **4 Definición.** Sea K complejo simplicial. Definimos el conjunto |K| de funciones $\alpha:V_K\to I$ tales que
 - 1. $\{v \mid \alpha(v) \neq 0\}$ es un simplex en K (en particular, el soporte de α es finito).
 - 2. $\sum_{v \in V_{\kappa}} \alpha(v) = 1$

Definimos una distancia en |K| con la siguiente fórmula

$$d(\alpha, \beta) = \sqrt{\sum_{v} (\alpha(v) - \beta(v))^2}$$

Notamos $|K|_d$ a este espacio métrico.

En realidad, el espacio topológico que le asociaremos a K no es este espacio métrico sino un espacio topológico con el mismo conjunto subyacente que localmente es como $|K|_d$. Si s es un simplex en K, definimos el conjunto $|s| \subset |K|$ como

$$|s| = \{ \alpha \in |K|, \ \alpha(v) = 0 \ \forall v \notin s \}.$$

Observar que, si dim s=n, entonces |s| está en biyección con Δ^n porque una función α que se anula fuera de s puede ser vista como una (n+1)-upla $(t_0,\ldots,t_n)\in\Delta^n$.

5 Definición. Dado un complejo simplicial K, consideramos para todo $s \in K$ el espacio métrico $|s|_d$ con la métrica definida anteriormente (con lo cual $|s|_d$ queda homeomorfo a Δ^n) y le damos al conjunto |K| la topología coherente (final) respecto a todos sus símplices. Explícitamente,

 $A \subset |K|$ es abierto (resp. cerrado) sii $A \cap |s|_d$ es abierto (resp. cerrado) en $|s|_d \ \forall s \in K$.

Notaremos con |K| a este espacio topológico y lo llamaremos la realización geométrica de K.

Observar que una función $f:|K|\to X$ es continua si y sólo si las restricciones $f:|s|_d\to X$ son continuas para todo $s\in K$.

Ejercicio 1. Probar que la identidad $1: |K| \to |K|_d$ es continua. Deducir que |K| es un espacio Hausdorff.

6 Definición. Sea $s \in K$. Definimos el simplex abierto $\langle s \rangle \subset |K|$ como el subespacio

$$\langle s \rangle = \{ \alpha \in |K|, \ \alpha(v) \neq 0 \text{ sii } v \in s \}$$

Ejercicio 2. Probar que $\langle s \rangle$ es un abierto de $|s|_d$ pero que, en general, no es abierto en |K|.

Ejercicio 3. Probar que:

- 1. Todo $A \subset |K|$ contiene un subespacio A' discreto que consiste en un punto exactamente por cada $\langle s \rangle$ que inteseca a A.
- 2. Si $A \subset |K|$ es compacto, entonces interseca finitos $\langle s \rangle$. En particular, |K| es compacto si y sólo si K es finito.
- **7 Definición.** Una triangulación de un espacio X es un par (K, f) con K complejo simplicial y $f: |K| \to X$ un homeomorfismo. Un poliedro es un espacio X que admite alguna triangulación.

Observar que un poliedro puede admitir varias triangulaciones diferentes.

Ejercicio 4. Hallar varias triangulaciones distintas para las esferas, los discos, el toro, \mathbb{R}^n y los espacios proyectivos.

8 Definición. Si v es un vértice de K, definimos la característica de v como la función $v:V_K\to I$

$$v(v') = \begin{cases} 0 & v' \neq v \\ 1 & v' = v \end{cases}.$$

De esta manera podemos identificar los vértices de K con los puntos correspondientes en el espacio |K|. Por ejemplo, si K está compuesto por los símplices $\{0\},\{1\},\{0,1\}$ su realización es

Notar además que toda $\alpha \in |K|$ se escribe como

$$\alpha = \sum_{v \in V_K} \alpha(v).v$$

y por lo tanto todo elemento del espacio |K| se puede escribir en forma única como combinación convexa de finitos vértices de K (con la condición que las coordenadas $\alpha(v)$ sean no nulas).

9 Definición. Un morfismo simplicial $f: K \to L$ entre complejos simpliciales es una función (de conjuntos) $f: V_K \to V_L$ tal que f(s) es un simplex de L si s es simplex de K.

Un morfismo simplicial $f:K\to L$ induce una función continua $|f|:|K|\to |L|$ definida por

$$|f|(\alpha)(v') = \sum_{f(v)=v'} \alpha(v)$$

Notar que si escribimos a $\alpha \in |K|$ como una combinación convexa $\alpha = \sum \alpha(v).v$, entonces $|f|(\alpha) = \sum \alpha(v).f(v)$. Por lo tanto |f| es lineal en cada simplex |s|, en particular |f| es continua.

10 Ejemplo. Si K es un 2-simplex con vértices a, b, c y L es un 1-simplex con vértices 0, 1, entonces la función $f: V_K \to V_L$ definida por f(a) = f(b) = 0, f(c) = 1 define un morfismo simplicial de K a L y su realización $|f|: |K| = \Delta^2 \to |L| = \Delta^1$ es la función $f(t_0, t_1, t_2) = (t_0 + t_1, t_2)$.

Un subcomplejo $L \subset K$ es un complejo simplicial cuyos vértices y símplices son subconjuntos de los vértices y símplices de K (y por lo tanto la inclusión es un morfismo simplicial).

El subcomplejo $L \subset K$ se dice *pleno* si todo simplex de K cuyos vértices están en L es un simplex de L. Por ejemplo, el borde de un triángulo lleno (2-simplex) no es pleno (los 3 vértices están en L pero todo el 2-simplex no está en L). En cambio, cada vértice y cada lado es un subcomplejo pleno de K.

Subdivisión Baricéntrica y Aproximación Simplicial

11 Definición. Sea $s = \{v_0, \dots, v_n\}$ un *n*-simplex de K. Definimos el baricentro de s como el punto $b(s) \in |K|$ dado por

$$b(s) = \sum_{i=0}^{n} \frac{1}{n+1} v_i.$$

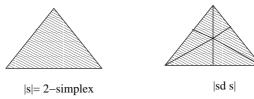
Observar que $b(s) \in \langle s \rangle$.

Por ejemplo, el baricentro de un 0-simplex $s = \{v\}$ es $b(s) = v \in |K|$ y el baricentro de un 1-simplex $s = \{v_0, v_1\}$ es el punto medio del segmento que une v_0 con v_1 en |K|.

12 Definición. Dado un complejo simplicial K, definimos su subdivisión baricéntrica como el complejo simplicial sd K cuyos vértices son todos los baricentros de los símplices de K y los símplices son todos los conjuntos ordenados finitos $\{b(s_0), \ldots, b(s_n)\}$ con s_i cara propia de s_{i+1} para todo i.

Notar que los vértices de sd K son puntos de |K| y que si s' es un simplex de la subdivisión, entonces existe un simplex s de K tal que $s' \subset |s|$.

La función lineal $|sd\ K| \to |K|$ inducida por la identidad en los vértices es un homeomorfismo y de esta forma identificamos la realización geométrica de la subdivisión con la realización geométrica de K.

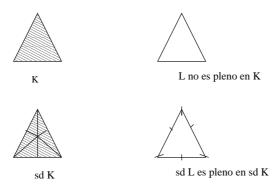


Inductivamente podemos definir

$$\begin{cases} sd^0(K) = K \\ sd^{n+1}(K) = sd(sd^n \ K) \end{cases}$$

E identificamos todos los espacios $|sd^n K| = |K|$.

Ejercicio 5. Si $L \subset K$ es un subcomplejo, entonces sd $L \subset sd$ K es un subcomplejo pleno.



Un par poliédrico (X,A) es un par topológico que admite triangulación por un complejo simplicial K y un subcomplejo $L \subset K$ respectivamente. Por ejemplo, (D^n, S^{n-1}) es un par poliédrico tomando $(K,L) = (s,\dot{s})$ con s un n-simplex.

Recordemos que un par bueno (X,A) es un par topológico Hausdorff con $A\subset X$ cerrado y con la propiedad que existe un abierto $A\subset U\subset X$ tal que la inclusión de A en U es un retracto por deformación fuerte.

13 Proposición. Todo par poliédrico (X, A) es un par bueno.

Demostración. Sean $L \subset K$ tales que X = |K| y A = |L|.

Por el ejercicio anterior, cambiando $L \subset K$ por $sd \ L \subset sd \ K$, podemos suponer que L es pleno en K.

Sea $N \subset K$ el máximo subcomplejo disjunto con L. Explícitamente, $V_N = V_K - V_L$ y $S_N = \{ s \in S_K, \text{ los vértices de } s \text{ están en } N \}.$

Notar que N también resulta pleno por construcción y que todo simplex $s = \{v_0, \dots, v_n\}$ de K cumple una de estas tres cosas:

- 1. $s \in S_L$ ó
- $2. \ s \in S_N \ ó$
- 3. Existe $0 \le p \le n$ tal que $\{v_0, \dots, v_p\}$ es simplex en L y $\{v_{p+1}, \dots, v_n\}$ es simplex en

Tomamos U = |K| - |N| que es abierto en |K| = X. Es claro que $A = |L| \subset U$. Definimos una retracción $r: U \to A$ de la siguiente manera:

Sea $\alpha \in U$. Si $\alpha \in A$, entonces $r(\alpha) = \alpha$. Si $\alpha \notin A = |L|$, entonces $\alpha = \sum_{i=0}^{n} \alpha_i \cdot v_i$ con $\{v_0,\ldots,v_n\}$ simplex en K. En este caso, como α no está en |N| ni en |L|, entonces existe un $0 \le p \le n$ tal que $\{v_0, \dots, v_p\}$ es simplex en L y $\{v_{p+1}, \dots, v_n\}$ es simplex en N.

Tomamos $a = \sum_{i=0}^{p} \alpha_i$. Observar que $a \neq 0$ y $a \neq 1$. Definimos $\alpha_i' = \frac{\alpha_i}{a}$ para $i = 0, \dots, p$ y $\alpha_i'' = \frac{\alpha_i}{1-a}$ para $i = p+1, \dots, n$ y por lo tanto se tiene

$$\alpha = a\alpha' + (1 - a)\alpha''$$

con $\alpha' = \sum_{i=0}^{p} \alpha'_i v_i \in |L|$ y $\alpha'' = \sum_{i=p+1}^{n} \alpha''_i v_i \in |N|$. Y entonces podemos definir $r(\alpha) = \alpha'$ si $\alpha \notin |L|$. De esta forma la función $r: U \to A$ está bien definida, resulta continua y es retracción.

Además $1_U \simeq ir$ via la homotopía

$$H(\alpha,t) = \begin{cases} \alpha & \alpha \in |L| \\ t\alpha' + (1-t)\alpha & \alpha \notin |L|. \end{cases}$$

Vimos que todo simplex $|s| \subset |K|$ se identifica con un convexo de \mathbb{R}^n y por lo tanto hereda la métrica usual de \mathbb{R}^n que llamaremos métrica lineal en s. De esta forma, decimos que |K| tiene una métrica lineal si cada simplex s la tiene.

Dado un complejo simplicial K y una métrica lineal en |K|, definimos

$$diam(s) = \sup\{||x - y||, \ x, y \in s\}$$

Es fácil ver que, si $s = \{v_0, \dots, v_n\}$, entonces

$$diam(s) = \max_{i,j} ||v_i - v_j||$$

Definimos también

$$mesh(K) = \sup_{s \in K} \{diam(s)\}\$$

Supongamos que s es un simplex de K y lo consideramos como un complejo simplicial \overline{s} . Tomamos un simplex $s' \in sd(\overline{s})$ y queremos comparar el diámetro de s' con el de s.

El siguiente resultado, relaciona ambos diámetros:

Ejercicio 6. Si s es un m-simplex y s' es un simplex de $sd(\overline{s})$ entonces

$$diam(s') \le \frac{m}{m+1} diam(s)$$

Como consecuencias inmediatas de resultado lema obtenemos los siguientes resultados.

Ejercicio 7. Si K es complejo simplicial m-dimensional, entonces

$$mesh(sd\ K) \leq \frac{m}{m+1} mesh(K)$$

Ejercicio 8. Si K es finito, para todo $\varepsilon > 0$ existe $r \in \mathbb{N}$ tal que

$$mesh(sd^r(K)) < \varepsilon$$

Comenzaremos ahora a estudiar aproximaciones simpliciales de funciones continuas entre poliedros. Recordemos que todo morfismo simplicial $\phi: K \to L$ induce una función continua $|\phi|: |K| \to |L|$ que es lineal en cada simplex de K.

Es claro que hay muchas funciones continuas entre |K| y |L| que no son inducidas por morfismos simpliciales (no toda función continua $f:I\to I$ es lineal !!). Nuestro objetivo es probar que las funciones continuas entre poliedros pueden ser aproximadas por funciones inducidas por morfismos simpliciales (que llamaremos directamente funciones simpliciales).

14 Definición. Sea $f: |K| \to |L|$ continua. Una aproximación simplicial de f es un morfismo simplicial $\phi: K \to L$ que cumple lo siguiente:

Si
$$f(\alpha) \in \langle s \rangle \Rightarrow |\phi|(\alpha) \in |s| \ \forall s \in L, \alpha \in |K|$$

Equivalentemente, si $f(\alpha) \in |s| \Rightarrow |\phi|(\alpha) \in |s|$.

Observar que, si ϕ aproxima a f y f(v) es un vértice de L para algún vértice v de K, entonces $\phi(v) = f(v)$. De esto se deduce inmediatemente el siguiente resultado.

Ejercicio 9. Sea $f: |K| \to |L|$ continua y sea $T \subset K$ un subcomplejo tal que $f|_{|T|}$ es simplicial. Si $\phi: K \to L$ es una aproximación simplicial de f, entonces $|\phi||_{|T|} = f|_{|T|}$.

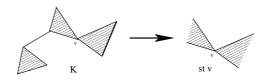
15 Ejemplo. Sea K el 1-simplex con vértices 0 y 1 (por lo tanto |K| = I). La función $f: I \to I$, $f(x) = \frac{1}{2} x$ puede ser aproximada por el morfismo simplicial identidad $1_K: K \to K$ y por el morfismo simplicial constante 0 pero no puede ser aproximada por el morfismo simplicial constante 1.

Ejercicio 10. Sea $\phi: K \to L$ una aproximación simplicial de $f: |K| \to |L|$. Entonces $f \simeq |\phi|$. Más aún, si $f|_{|T|} = |\phi||_{|T|}$, entonces $f \simeq |\phi|$ relativo a |T|.

Para probar los teoremas de aproximaciones simpliciales, necesitamos introducir la noción de estrella de un vértice st v.

16 Definición. Sea v un vértice de un complejo simplicial K. La estrella de v es el subespacio

st
$$v = \{ \alpha \in |K|, \ \alpha(v) \neq 0 \}.$$



Ejercicio 11. Sean v_0, \ldots, v_n vértices de K. Entonces $s = \{v_0, \ldots, v_n\}$ es un simplex de K si y sólo si $\bigcap_{i=0}^n st(v_i) \neq \emptyset$.

Es claro que st $v \subset |K|$ es siempre abierto. Más aún, $\{st\ v\}_{v \in V_K}$ es un cubrimiento por abiertos de |K|. En particular, si $f: |K| \to |L|$ es continua, entonces

$$\{f^{-1}(st\ v)\}_{v\in V_L}$$

es un cubrimiento por abiertos de |K|.

17 Teorema. Sea $f: |K| \to |L|$ continua $y \phi: V_K \to V_L$ función de conjuntos. Entonces, ϕ es aproximación simplicial de f si y sólo si $f(st \ v) \subseteq st(\phi(v))$ para todo $v \in V_K$.

Demostración. Supongamos primero que ϕ es aproximación simplicial de f y veamos que $f(st\ v) \subseteq st(\phi(v))$ para todo $v \in V_K$.

Sea v vértice de K. Tomamos $\alpha \in st$ v, entonces $\alpha(v) \neq 0$. Sea s simplex en K tal que $\alpha \in s > y$ sea s' simplex en K tal que K tal

Como ϕ aproxima a f, entonces $|\phi|(\alpha) \in |s'|$. Por otro lado, como $|\phi|$ es lineal en cada simplex, entonces

$$|\phi|(\alpha)(\phi(v)) = \sum_{\phi(v') = \phi(v)} \alpha(v') \neq 0$$

y por lo tanto $\phi(v)$ es vértice de s' y como $f(\alpha) \in < s' >$, entonces $f(\alpha) \in st(\phi(v))$ (la coordenada del punto $f(\alpha)$ correspondiente al vértice $\phi(v)$ es no nula).

Con esto probamos que $f(st \ v) \subseteq st(\phi(v))$.

Veamos ahora la otra implicación. Primero debemos probar que la función de conjuntos ϕ es un morfismo simplicial.

Si $s = \{v_0, \dots, v_n\}$ es un simplex en K, entonces por el lema anterior, $\bigcap st(v_i) \neq \emptyset$ y por lo tanto

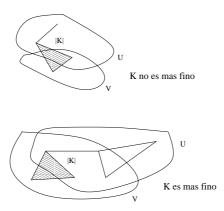
$$\emptyset \neq f(\bigcap st(v_i)) \subset \bigcap f(st(v_i)) \subset \bigcap st(\phi(v_i))$$

y nuevamente por el lema anterior, se deduce que $\{\phi(v_0), \ldots, \phi(v_n)\}$ es simplex en L. Esto prueba que ϕ es simplicial.

Veamos ahora que ϕ aproxima a f.

Sea $\alpha \in |K|$ y supongamos que $f(\alpha) \in \langle s' \rangle$. Debemos ver que $|\phi|(\alpha) \in |s'|$. Sea s simplex de K tal que $\alpha \in \langle s \rangle$. Para todo vértice v de s, se tiene que $\alpha(v) \neq 0$ y por lo tanto $\alpha \in st$ v. Como $f(st \ v) \subset st(\phi(v))$, se tiene que $f(\alpha)(\phi(v)) \neq 0$ y por lo tanto $\phi(v)$ es vértice de s'. Esto prueba que ϕ manda los vértices de s en vértices de s' y como ϕ es simplicial entonces $|\phi|(\alpha) \in |s'|$.

18 Definición. Sea K complejo simplicial y sea $\mathcal{U} = \{U_i\}$ un cubrimiento por abiertos de |K|. Decimos que K es más fino que \mathcal{U} si para todo vértice v de K existe un abierto U_i del cubrimiento tal que st $v \subset U_i$.



Ejercicio 12. Una función continua $f: |K| \to |L|$ admite una aproximación simplicial $\phi: K \to L$ si y sólo si K es más fino que el cubrimiento $\{f^{-1}(st\ v)\}_{v \in V_L}$.

Supongamos que $K' = sd^m K$ para algún m. Como corolario inmediato del teorema 17 vemos que una función

$$\phi: V_{K'} \to V_K$$

es una aproximación simplicial de la identidad $1:|K'|\to |K|$ si y sólo si $v\in st(\phi(v))$ para todo vértice v de K'. Observemos entonces también que siempre podremos encontrar aproximaciones simpliciales de la identidad $1:|K'|\to |K|$.

Ahora juntemos varios resultados que ya conocemos para probar la existencia de aproximaciones simpliciales.

Si K es un complejo simplicial finito, sabemos que |K| es compacto. Por lo tanto todo cubrimiento por abiertos admite subcubrimiento finito. También sabemos que si subdividimos K las veces necesarias, entonces $mesh(sd^m K)$ se hace tan chico como uno quiera y por lo tanto probamos el siguiente resultado.

Ejercicio 13. Si $f: |K| \to |L|$ es continua y K es finito, entonces existe un natural n_0 y aproximaciones simpliciales de f

$$\phi_n : sd^n(K) \to L, \ \forall n \ge n_0.$$

Observar que se necesitan todas las subdivisiones para poder aproximar todas las funciones continuas $f: K \to L$. Por ejemplo, si s es el 2-simplex y tomamos $K = L = \dot{s}$ (las caras propias), tenemos que $|K| = |L| = S^1$. Como el grupo fundamental de S^1 es \mathbb{Z} entonces hay infinitas clases homotópicas de funciones continuas $f: S^1 \to S^1$. Pero por otra parte para todo n existen solamente finitos morfismos simpliciales $\phi: sd^n(\dot{s}) \to \dot{s}$.

Veamos algunas aplicaciones topológicas interesantes del teorema anterior.

19 Proposición. Si m < n, toda función continua $f: S^m \to S^n$ es null homotópica (o lo que es lo mismo, se puede extender al disco D^{m+1}). Es decir, $\pi_m(S^n) = 0$ si m < n.

Demostración. Consideramos $S^m = |\dot{s}|$ y $S^n = |\dot{s}'|$ con s un m+1-simplex y s' un n+1-simplex.

Por el teorema anterior sabemos que existe aproximación simplicial

$$\phi: sd^r\dot{s} \to \dot{s'}$$

Como $f \simeq |\phi|$, basta ver que $|\phi|$ es null homotópica.

Ahora bien, como la dimensión de $sd^r(\dot{s})$ es m y m < n, entonces existe un simplex en $\dot{s'}$ que no es imagen de ningún simplex de $sd^r(\dot{s})$ y por lo tanto existe un $\alpha \in |\dot{s'}|$ tal que $\alpha \notin Im(|\phi|)$.

Por lo tanto $|\phi|$ no es sobrevectiva y se tiene

$$|\phi|: S^m \to S^n - \{\alpha\} \simeq \mathbb{R}^n$$

y como \mathbb{R}^n es contráctil, vale que $|\phi|$ es null homotópica.

Ejercicio 14. Sea X un conjunto $y \mathcal{U} = \{U_i\}$ una colección de subconjuntos de X. El nervio de \mathcal{U} es el complejo simplicial $K(\mathcal{U})$ cuyos símplices son los subconjuntos finitos no vacíos de \mathcal{U} , $s = \{U_{i_1}, \ldots, U_{i_n}\}$ tales que $\bigcap U_{ik} \neq \emptyset$.

- 1. Probar que efectivamente $K(\mathcal{U})$ es un complejo simplicial.
- 2. Sea K complejo simplicial y sea $\mathcal{U} = \{st \ v | v \in K\}$ cubrimiento abierto de |K|. Probar que la función que le asigna a cada vértice v de K el abierto $st \ v$ de |K| induce un isomorfismo simplicial $K = K(\mathcal{U})$.

Ejercicio 15. Sea \mathcal{U} un cubrimiento por abiertos de un espacio topológico X y sea $K(\mathcal{U})$ su nervio. Una función continua $f: X \to |K(\mathcal{U})|$ se dice canónica si $f^{-1}(st \ U) \subset U$ para todo U del cubrimiento \mathcal{U} . Probar que:

- 1. Si \mathcal{U} es un cubrimiento localmente finito de X, existe una biyección entre las funciones canónicas $X \to |K(\mathcal{U})|$ y las particiones de la unidad subordinadas a \mathcal{U} .
- 2. Si \mathcal{U} es cubrimiento localmente finito de X, entonces todas las funciones canónicas $X \to |K(\mathcal{U})|$ son homotópicas.

Ejercicio 16. Un espacio topológico X tiene dimensión $\leq n$ si todo cubrimiento abierto de X admite un refinamiento abierto cuyo nervio es un complejo simplicial de dimensión $\leq n$. Decimos que dim X = n si dim $X \leq n$ y dim $X \not\leq n$. Probar que:

- 1. Si $A \subseteq X$ es cerrado entonces dim $A \leq \dim X$.
- 2. Si K complejo simplicial finito y dim $K \leq n$ entonces dim $|K| \leq n$.
- 3. Si s es un n-simplex, entonces dim |s| = n.
- 4. Si X es espacio paracompacto y dim $X \leq n$, entonces toda función continua $f: X \to S^m$ es nullhomotópica para m > n.

Ejercicio 17. Sea X un espacio métrico compacto y sea C el espacio de funciones continuas $f: X \to \mathbb{R}^{2n+1}$ con la métrica:

$$d(f,g)=\sup\{||f(x)-g(x)||\ |x\in X\}$$

Probar que:

- 1. C es espacio métrico completo.
- 2. Para todo $m \in \mathbb{N}$, el subconjunto

$$C_m = \{ f \in C \mid diam(f^{-1}(z)) < \frac{1}{m} \ \forall \ z \in \mathbb{R}^{2n+1} \}$$

es abierto en C.

- 3. $\bigcap C_m$ es el conjunto de homeomorfismos de X en \mathbb{R}^{2n+1} .
- 4. Si dim $X \leq n$, entonces C_m es denso en C para todo m. Deducir que, en este caso, X puede ser inmerso en \mathbb{R}^{2n+1} .

Ejercicio 18. Una pseudavariedad n-dimensional es un complejo simplicial K que cumple lo siguiente:

- (I) K es homogéneamente n-dimensional, es decir, todo simplex de K es cara de algún n-simplex.
- (II) Todo (n-1)-simplex de K es cara de a lo sumo dos n-símplices.
- (III) Para todo par de n-símplices s, s', existe una sucesión finita $s = s_0, s_1, \ldots, s_r = s'$ de n-símplices tales que s_i y s_{i+1} tienen una (n-1)-cara en común para todo i.

El borde de una pseudovariedad de dimensión n es el subcomplejo \dot{K} generado por los (n-1)-símplices que son caras de exactamente un n-simplex de K. Si \dot{K} es vacía decimos que K es un pseudovariedad sin borde.

Probar lo siguiente:

- 1. Un n-simplex s es una pseudovariedad n-dimensional y su borde (como pseudovariedad) es \dot{s} .
- 2. El borde de una pseudovariedad finita de dimensión 1 es vacío o tiene exactamente dos vértices.