Teoría de Homotopía 2006

Práctica Cuatro Grupos de Homotopía.

Notaciones. Dados dos espacios punteados X e Y, notaremos con C(X,Y) al conjunto de funciones continuas y punteadas de X a Y y con [X,Y] al conjunto de clases homotópicas de funciones punteadas (donde las homotopías respetan también los puntos base). Notaremos con X^Y al espacio de funciones continuas y punteadas de Y a X con la topología del subespacio de la compacto-abierta. Dado un espacio punteado X notaremos con ΣX a la suspensión reducida $\Sigma X = S^1 \wedge X$.

1. Probar, utilizando la ley exponencial para espacios topológicos, la ley exponencial para espacios punteados y su versión homotópica: Dados X,Y,Z espacios punteados, con Y localmente compacto y Hausdorff, se tienen biyecciones naturales

$$C(X \wedge Y, Z) \simeq C(X, Z^Y)$$
 $[X \wedge Y, Z] \simeq [X, Z^Y]$

- 2. Probar que $\Sigma S^n = S^{n+1}$. Calcular ΣD^n .
- 3. Sea P un espacio punteado. Probar que, si [X,P] es un grupo para todo espacio punteado X y $f^*:[X,P]\to [Y,P]$ es morfismo de grupos para todo $f:Y\to X$ continua, entonces P resulta un H-grupo. Más aún, para todo X, la estructura de grupo de [X,P] coincide con la estructura usual.
- 4. Probar que todo espacio con el mismo tipo homotópico de un H-grupo es un H-grupo.
- 5. Sean P y P' H-grupos. Un morfismo de H-grupos $f:P\to P'$ es una función continua tal que el diagrama

$$P \times P \xrightarrow{\mu} P$$

$$f \times f \downarrow \qquad \qquad \downarrow f$$

$$P' \times P' \xrightarrow{\mu'} P'$$

es homotópicamente conmutativo, donde μ y μ' son las operaciones de P y P'.

Probar que una función continua $f: P \to P'$ es un morfismo de H-grupos si y sólo si la función $f_*: [X, P] \to [X, P']$ es un morfismo de grupo para todo espacio punteado X.

- 6. Sea K un H-cogrupo y P un H-grupo. Probar que las estructuras de grupo inducidas por K y P en [K, P] coinciden y que [K, P] resulta un grupo abeliano.
- 7. Sea X un espacio topológico y sea $n \in \mathbb{N}_0$. Probar que son equivalentes:
 - a) X es n-conexo.
 - b) Si $m \leq n$, toda función continua $f: S^m \to X$ es homotópica a una constante.
 - c) Si $m \leq n$, toda función continua $f: S^m \to X$ se extiende continuamente a una función $\overline{f}: D^{m+1} \to X$.
- 8. Sea $\{X_i\}$ una familia de espacios topológicos arco conexos y sea $\prod X_i$ el producto. Probar que $\pi_n(\prod X_i) = \prod \pi_n(X_i)$.
- 9. Sea $p: E \to B$ un revestimiento y sean $b_0 \in B$ y $e_0 \in p^{-1}(b_0)$. Probar que

$$p_*: \pi_n(E, e_0) \to \pi_n(B, b_0)$$

es un isomorfismo para todo $n \ge 2$. (Sugerencia: usar que S^n es simplemente conexo para $n \ge 2$ y las propiedades de levantamiento de los revestimientos).

10. Deducir del ejercicio anterior que $\pi_n(S^1) = 0$ para $n \ge 2$ y calcular los grupos de homotopía del toro n-dimensional.

- 11. Sea (X,A) un par topológico, $x_0 \in A$ y $s_0 \in S^{n-1}$. Probar que una función $f:(D^n,S^{n-1},s_0) \to (X,A,x_0)$ representa la clase del cero en $\pi_n(X,A,x_0)$ si y sólo si f es homotópica relativa a S^{n-1} a una función cuya imagen está contenida en A.
- 12. Sea (X, A) un par topológico y $x_0 \in A$.
 - a) Probar que existe un morfismo $\partial: \pi_n(X, A, x_0) \to \pi_{n-1}(A, x_0)$ inducido por las restricciones de las funciones $f: (D^n, S^{n-1}, s_0) \to (X, A, x_0)$ a S^{n-1} .
 - b) Probar que la siguiente sucesión es exacta:

$$\dots \to \pi_n(A, x_0) \xrightarrow{i_*} \pi_n(X, x_0) \xrightarrow{j_*} \pi_n(X, A, x_0) \xrightarrow{\partial} \pi_{n-1}(A, x_0) \to \dots \to \pi_0(X, x_0)$$
donde $i: A \to X \ y \ j: (X, x_0) \to (X, A)$ son las inclusiones.

- 13. Sea X un espacio arco conexo y CX el cono de X. Probar que $\pi_n(CX, X, x_0) = \pi_{n-1}(X, x_0)$ para todo $n \ge 1$.
- 14. Probar que, si $A \subset X$ es un retracto, entonces existe un isomorfismo

$$\pi_n(X, x) \simeq \pi_n(A, x) \oplus \pi_n(X, A, x) \qquad n \ge 2.$$

15. Sean X,Y espacios punteados. Probar que para todo $n\geq 2$ existe un isomorfismo

$$\pi_n(X \vee Y) \simeq \pi_n(X) \oplus \pi_n(Y) \oplus \pi_{n+1}(X \times Y, X \vee Y)$$

16. Sea $f: X \to Y$ una equivalencia homotópica. Probar que

$$f_*: \pi_n(X, x) \to \pi_n(Y, f(x))$$

es un isomorfismo para todo n y todo $x \in X$. (Sugerencia: Si $g: Y \to X$ es una inversa homotópica de f, entonces $g_*f_*: \pi_n(X, x) \to \pi_n(X, gf(x))$ es iso).