Teoría de Homotopía 2006

Práctica Cinco CW-complejos

Parte Uno: Preliminares.

- 1. Describir estructuras celulares para la esfera n-dimensional, los discos n-dimensionales y el toro.
- 2. Probar que el interior de toda celda principal de un CW-complejo es abierto.
- 3. Comprobar que los poliedros son CW-complejos con estructura celular inducida por la estructura simplicial.
- 4. Sea X un CW-complejo, Y un espacio topológico y $f: X \to Y$ una función. Probar que son equivalentes:
 - a) $f: X \to Y$ es continua.

 - b) La restricción $f:e^n_\alpha\to Y$ es continua para toda celda e^n_α . c) $f\circ f^n_\alpha:D^n\to Y$ es continua para toda celda e^n_α , donde $f^n_\alpha:D^n\to e^n_\alpha$ es la función
- 5. Sea X un CW-complejo. Probar que $H: X \times I \to Y$ es continua si y sólo si todas las restricciones $H: e_{\alpha}^n \times I \to Y$ lo son.
- 6. Sea A un subcomplejo de un CW-complejo X. Probar que A es cerrado en X.
- 7. Sea $\{v_1,\ldots,v_n\}$ una base cualquiera del espacio vectorial \mathbb{R}^n . Probar que la base define una estructura de CW-complejo en \mathbb{R}^n tomando como k-esqueleto al conjunto

$$(\mathbb{R}^n)^k = \left\{ \sum_{i=1}^n s_i v_i | \ s_i \in \mathbb{R} \ \text{y} \ s_i \in \mathbb{Z} \ \text{para al menos} \ n-k \ \text{indices} \ i \right\}$$

8. Sea K una estructura celular en X y L una estructura celular en Y. Probar que

$$K \times L = \{e_{\alpha}^n \times e_{\beta}^m \mid e_{\alpha}^n \in K, e_{\beta}^m \in L\}$$

es una estructura celular en $X \times Y$.

- 9. Probar que si X e Y son CW-complejos e Y es localmente compacto entonces $X \times Y$ es un CW-complejo. En particular, si X es un CW-complejo entonces $X \times I$ también lo es. Describir la estructura celular de $X \times I$ en función de la estructura celular de X.
- 10. Sea (X, A) un CW-complejo relativo. Probar que X/A es un CW-complejo.
- 11. Sea Y un espacio topológico. Probar que Y es contráctil si y sólo si para toda cofibración $i:A\to X$ y toda función continua $f: A \to Y$ existe una extensión continua $\overline{f}: X \to Y$ tal que $\overline{f}i = f$. En particular, si (X, A) es un CW-complejo relativo e Y es un espacio contráctil, toda función continua $f: A \to Y$ se extiende continuamente a X.
- 12. Sea (X,A) un CW-complejo relativo y sea $a \in A$. Probar que si A es fuertemente contráctil (es decir, la inclusión del punto a en A es un retracto por deformación fuerte), entonces la proyección

$$p:(X,A)\to (X/A,*)$$

es una equivalencia homotópica.

Parte Dos: Comienza el show.

- 13. Probar que si X se obtiene de A adjuntando una n-celda e^n y x es un punto en el interior de la n-celda, entonces A es un retracto por deformación fuerte de $X \{x\}$.
- 14. Enunciar y probar las versiones relativas y de pares del Teorema de Aproximación Celular.
- 15. Sea $f: X \to Y$ un morfismo celular entre CW-complejos. Probar que el cilindro Z_f es un CW-complejo.
- 16. Sea (X, A) un CW-par n-conexo. Probar que existe un CW-par (Z, A) tal que $(Z, A) \simeq (X, A)$ relativo a A y tal que Z A no tiene celdas de dimensión menor a n. En particular, dado (X, x_0) un CW-complejo punteado n-conexo, existe un CW-complejo punteado (X', x'_0) homotópicamente equivalente a (X, x_0) tal que $(X')^n = x'_0$
- 17. Sean X e Y CW-complejos del mismo tipo homotópico y sean X^n e Y^n sus n-esqueletos. Probar que, si X e Y no tienen celdas de dimensión n+1, entonces X^n e Y^n también tienen el mismo tipo homotópico.
- 18. Sean $(X, x_0), (Y, y_0)$ espacios punteados, recordar que el producto smash se define como

$$X \wedge Y = X \times Y/X \vee Y$$

donde la unión en un punto $X \vee Y$ es considerada como el subespacio de $X \times Y$ formado por los puntos de la forma (x, y_0) y (x_0, y) . Recordar también que, si X e Y son CW-complejos, entonces $X \wedge Y$ es un CW-complejo (si uno de los dos es localmente finito se toma la topología producto. Si no se le impone a $X \wedge Y$ la topología débil inducida). Sea X un CW-complejo n-conexo e Y un CW-complejo m-conexo. Probar que $X \wedge Y$ es un CW-complejo (n+m+1)-conexo. (Sugerencia: ejercicio anterior).

- 19. Recordar que la suspensión (reducida) de un espacio punteado (X, x_0) se obtiene del cilindro $X \times I$ identificando las dos tapas y todos los puntos (x_0, t) en un mismo punto. Notar que la suspensión (reducida) ΣX es homeomorfa al producto smash $S^1 \wedge X$. Deducir del ejercicio anterior que si X es un CW-complejo n-conexo entonces ΣX es un CW-complejo (n + 1)-conexo.
- 20. Sea X un CW-complejo n-conexo e Y un CW-complejo m-conexo y supongamos que X o Y es localmente finito. Probar que las inclusiones $i: X \to X \lor Y, \ j: Y \to X \lor Y$ inducen isomorfismos

$$(i_*, j_*) : \pi_r(X, x_0) \oplus \pi_r(Y, y_0) \to \pi_r(X \vee Y, *)$$

para $2 \le r \le n + m$. (Sugerencia: $(X \times Y, X \vee Y)^{n+m+1} = X \vee Y$).

21. Deducir del ejercicio anterior que

$$\pi_n(\bigvee_{\alpha} S_{\alpha}^n, *) = \bigoplus_{\alpha} \pi_n(S_{\alpha}^n, s_0)$$

para $n \geq 2$ (Sugerencia: para finitos índices α se tiene el ejercicio anterior, para infinitos índices usar que toda función continua $f: S^n \to \bigvee_{\alpha} S^n_{\alpha}$ tiene imagen compacta).

22. Sean X, Y espacios topológicos y sean (X', f) e (Y', g) CW-aproximaciones de X e Y. Probar que si $h: X \to Y$ es continua, entonces existe un morfismo celular $h': X' \to Y'$ tal que el siguiente diagrama homotópicamente conmuta:

$$X' \xrightarrow{h'} Y'$$

$$\downarrow f \qquad \qquad \downarrow g$$

$$X \xrightarrow{h} Y$$

es decir, $gh' \simeq hf$.

- 23. Deducir del ejercicio anterior que todas las CW-aproximaciones de un espacio X son homotópicamente equivalentes.
- 24. Sea $f:X\to Y$ una equivalencia débil. Probar que para todo CW-complejo Z, el morfismo $f_*:[Z,X]\to [Z,Y]$ es isomorfismo.
- 25. Sea X un CW-complejo que es la unión de una familia

$$X_1 \subset X_2 \subset X_3 \dots$$

de subcomplejos tales que las inclusiones $i_n: X_n \to X_{n+1}$ son nullhomotópicas. Probar que X es contráctil. Deducir que la esfera infinita S^{∞} es contráctil y más generalmente, la suspensión infinita $\Sigma^{\infty}Y$ de cualquier CW-complejo Y es contráctil (la suspensión infinita es la unión topológica de todas las suspensiones iteradas de Y).

26. Decimos que dos espacios X e Y son débilmente equivalentes (y notamos $X \simeq_w Y$) si existe una sucesión finita $X_0 = X, X_1, \dots, X_r = Y$ de espacios y equivalencias débiles $X_i \to X_{i+1}$ ó $X_{i+1} \to X_i$. Probar que $X \simeq_w Y$ si y sólo si admiten una CW-aproximación en común (i.e. existe un CW-complejo Z que aproxima a ambos).

Parte Tres: Ejercicios Difíciles.

27. Sea $n \in \mathbb{N}$ y sea G un grupo (abeliano en el caso $n \geq 2$). Probar que existe un CW-complejo arco conexo X tal que

$$\pi_r(X) = \begin{cases} G & r = n \\ 0 & r \neq n \end{cases}$$

Nombre: En ese caso X se llama un complejo de Eilenberg-MacLane y se lo denota K(G, n).

28. a) Sea X un CW-complejo (n-1)-conexo tal que $\pi_n(X) = G$ y sea Y un espacio arco conexo tal que

$$\pi_r(Y) = \begin{cases} H & r = n \\ 0 & r > n \end{cases}$$

Sea $\phi: G \to H$ un morfismo de grupos. Probar que existe una función continua $f: X \to Y$ tal que $f_*: \pi_n(X) \to \pi_n(Y)$ es el morfismo ϕ . Más aún, f es única salvo homotopía.

- b) Deducir del item anterior que los K(G, n) (para n y G fijos) son únicos salvo equivalencias homotópicas.
- 29. Sea $f: X \to Y$ una función continua entre CW-complejos arco conexos. Probar que para todo $n \in \mathbb{N}$, la función f se puede factorizar via $X \to Z_n \to Y$ donde la primera función induce isomorfismos en los π_i para $i \leq n$ y la segunda induce isomorfismos en π_i para $i \geq n+1$.