Teoría de Números - Práctica 4

2do. Cuatrimestre 2005

- (1) Sea K un cuerpo de números, $\mathfrak{a} \subset \mathfrak{O}_K$ un ideal.
 - Probar que existe una extension finita L de K tal que \mathfrak{a} se vuelve principal en L. (Hint: si h es el número de clases de \mathcal{O}_K , que se puede decir de \mathfrak{a}^h ?)
 - Probar que existe una extensión finita L de K tal que todo ideal de K se vuelve principal en L. (esto NO quiere decir que L tiene número de clases 1).
 - Hallar una extensión de grado 4 sobre $\mathbb{Q}[\sqrt{-21}]$ tal que todo ideal de $\mathbb{Z}[\sqrt{-21}]$ se vuelva principal.
- (2) Sea G un subgrupo (aditivo) de \mathbb{R}^m tal que todo subconjunto de G acotado es finito. Vamos a probar que G es un retículo.
 - Sea Λ un retículo de dimensión maximal (i.e. un \mathbb{Z} -modulo generado por elementos \mathbb{R} -independientes) contenido en G (existe porque $\{0\} \subset G$). Probar que G esta contenido en el subespacio de \mathbb{R}^m generado por Λ .
 - Sea F un paralelepípedo fundamental para Λ (i.e. si $\Lambda = \langle v_1, \ldots, v_n \rangle$, $F = \{\sum_{i=1}^n a_i v_i : a_i \in \mathbb{R}, 0 \leq a_i < 1\}$). Probar que cada coclase $v + \Lambda$, $v \in G$ tiene un representante en F. Deducir que G/Λ es finito.
 - Probar que $rG \subset \Lambda$ para algun $r \in \mathbb{N}$. Concluir que rG es un grupo abeliano libre de rango menor o igual que d (donde d es el rango de Λ).
 - Probar que G es un grupo abeliando libre de rango d.
 - Sea B una \mathbb{Z} -base de G. Probar que sus elementos son \mathbb{R} independientes. Concluir que G es un retículo. (esto concuye
 la demostración del Teorema de Unidades)
- (3) Si f y g son dos funciones aritméticas (i.e. $f, g : \mathbb{N} \to \mathbb{C}$), definimos su convolución (y notada f * g) como

$$f * g(n) = \sum_{d|n} f(d)g(\frac{n}{d})$$

Probar que f * g = g * f (conmutativa) y f * (g * h) = (f * g) * h (asociativa).

- (4) Sea I la función $I(n) = \begin{cases} 1 & \text{si } n = 1 \\ 0 & \text{sino} \end{cases}$. Probar que f * I = I * f = f.
- (5) Probar que si f es una función arithmética y $f(1) \neq 0$, entonces existe una única función f^{-1} tal que $f * f^{-1} = I$. (hint: $f^{-1}(n) = \frac{-1}{f(1)} + \sum_{d|n,d < n} f(\frac{n}{d}) f^{-1}(d)$)
- (6) (**Fórmula de inversión de Frobenius**) Sea μ la función de Möbius dada por

$$\mu(n) = \left\{ \begin{array}{ll} (-1)^k & \mathrm{si} \ n = p_1 \dots p_k \ \mathrm{primos} \ \mathrm{distintos} \\ 0 & \mathrm{sino} \end{array} \right.$$

Probar que si $f(n) = \sum_{d|n} g(d)$ entonces $g(n) = \sum_{d|n} f(d) \mu(\frac{n}{d})$ (equivalentemente, si 1 denota la función 1(n) = 1, entonces $1 * \mu =$

- (7) Probar que $\sum_{n} \frac{\mu(n)}{n^{s}} = \frac{1}{\zeta(s)}$. (8) Probar que $\sum_{n} \frac{\varphi(n)}{n^{s}} = \frac{\zeta(s-1)}{\zeta(s)}$, donde φ denota la función de Euler. (9) Definamos la función de Mangoldt como

$$\Lambda(n) = \left\{ egin{array}{ll} log(p) & ext{si } n = p^r ext{ con } r \geq 1 \ 0 & ext{sino} \end{array}
ight.$$

Probar que $\sum_{n} \frac{\Lambda(n)}{n^{s}} = \frac{\zeta'(s-1)}{\zeta(s)}$. (10) Sea $L(s) = \sum_{n} \frac{a_{n}}{n^{s}}$ una serie de Dirichlet convergente para $\Re(s) > s_{0}$ y tal que L(s) = 0 para todo s con $\Re(s) > s_{0}$. Probar que $a_{n} = 0$ para todo $n \in \mathbb{N}$ (deducir que si dos series de Dirichlet coinciden en un semiplano, sus coeficientes son iguales).