1

Medida de Hausdorff.

Ejercicio 1 Dado $A \subset \mathbb{R}^N$ y $0 \le s < \infty$ probar que

$$\lim_{\delta \to 0} \mathcal{H}^s_{\delta}(A) = \sup_{\delta > 0} \mathcal{H}^s_{\delta}(A).$$

Ejercicio 2 Mostrar que

- (a) \mathcal{H}^0 es la medida de contar.
- (b) $\mathcal{H}^1 = \mathcal{L}$ en \mathbb{R} .
- (c) $\mathcal{H}^s \equiv 0$ en \mathbb{R}^N para todo s > N.
- (d) $\mathcal{H}^s(\lambda A) = \lambda^s \mathcal{H}^s(A)$ para todo $\lambda > 0$ y $A \subset \mathbb{R}^N$.
- (e) $\mathcal{H}^s(L(A)) = \lambda^s(A)\mathcal{H}^s(A)$ para toda isometría afín $L: \mathbb{R}^N \to \mathbb{R}^N$ y $A \subset \mathbb{R}^N$.

Ejercicio 3 Probar que:

- (a) Si $\{E_n\}_{n\in\mathbb{N}}$ una sucesión de subconjuntos de \mathbb{R}^N com dimensión de Hausdorff d, entonces $\bigcup_{n\in\mathbb{N}}E_n$ también tiene dimensión de Hausdorff d.
- (b) Un conjunto numerable tiene dimensión de Hausdorff 0.

Ejercicio 4 Sean μ una distribución de masa sobre \mathbb{R}^N , $F \subset \mathbb{R}$ boreliano y $0 < c < \infty$. Probar que si

$$\limsup_{r \to 0} \frac{\mu(B(x,r))}{r^s} < c \quad \forall x \in F$$

entonces $\mathcal{H}^s(F) \ge \frac{\mu(F)}{c}$.

Ejercicio 5 Sea $f \in C^{\gamma}$ sobre $E \subset \mathbb{R}^{N}$. Probar que

- (a) $\mathcal{H}_{\beta}(f(E)) \leq L^{\beta}\mathcal{H}_{\alpha}(E)$ si $\beta = \frac{\alpha}{\gamma}$, donde L es la constante de Hölder asociada a f.
- (b) $\dim_{\mathcal{H}}(f(E)) \le \frac{1}{\gamma} \dim_{\mathcal{H}}(E)$.

Ejercicio 6 Probar que un conjunto $E \subset \mathbb{R}^N$ con $\dim_{\mathcal{H}}(E) < 1$ es totalmente disconexo.

Ejercicio 7 Probar que la dimensión de Hausdorff del conjunto de Cantor es $\frac{\ln 2}{\ln 3}$. ¿Cuál es su medida $\frac{\ln 2}{\ln 3}$ —dimensional?

Ejercicio 8 Sean $f: \mathbb{R}^N \to \mathbb{R}^M$ y $A \subset \mathbb{R}^N$ tal que $\mathcal{L}^N(A) > 0$ entonces

- (a) $\dim_{\mathcal{H}} G(f,A)$) $\geq N$ donde G(f,A) es el gráfico de f sobre A.
- (b) Si f es Lipschitz, $\dim_{\mathcal{H}}(G(f,A)) = N$.

Ejercicio 9 Sean $f \in L^1_{\text{loc}}(\mathbb{R}^N)$ y $0 \leq s < N$ y definimos

$$\Lambda_s \equiv \left\{ x \in \mathbb{R}^N : \limsup_{r \to 0} \frac{1}{r^s} \int_{B(x,r)} |f| \, dy > 0 \right\}.$$

entonces $\mathcal{H}^s(\Lambda_s) = 0$.

Ejercicio 10 Si $E \subset \mathbb{R}^N$, $F \subset \mathbb{R}^M$ son borelianos con $\mathcal{H}^s(E)$, $\mathcal{H}^t(E) < \infty$, entonces

$$\mathcal{H}^{s+t}(E \times F) \ge c\mathcal{H}^s(E)\mathcal{H}^t(F)$$

donde c > 0 es una constante que depende sólo de s y t.

Ejercicio 11 Si $E \subset \mathbb{R}^N, F \subset \mathbb{R}^M$ borelianos entonces

$$\dim_{\mathcal{H}}(E \times F) \ge \dim_{\mathcal{H}} E + \dim_{\mathcal{H}} F.$$