Fórmulas de Área y Coárea.

Ejercicio 1 (Fórmula de Área) Sea $f: \mathbb{R}^n \to \mathbb{R}^m$ una función Lipschitz, con $n \leq m$. Entonces para todo subconjunto $A \subset \mathbb{R}^n$ vale

$$\int_A Jf \, dx = \int_{\mathbb{R}^m} \mathcal{H}^0(A \cap f^{-1}\{y\}) \, d\mathcal{H}^n(y).$$

Ejercicio 2 (Cambio de Variables 1) Sea $f: \mathbb{R}^n \to \mathbb{R}^m$ una función Lipschitz, con $n \leq m$. Entonces para todo función $g: \mathbb{R}^n \to \mathbb{R}$ \mathcal{L}^n -sumable vale

$$\int_{\mathbb{R}^n} g(x)Jf(x) dx = \int_{\mathbb{R}^m} \left[\sum_{x \in f^{-1}\{y\}} g(x) \right] d\mathcal{H}^n(y).$$

Ejercicio 3 Sea $f:(a,b)\to\mathbb{R}^m$ una función Lipschitz e inyectiva. entonces

$$\mathcal{H}^1(f(a,b)) = \int_a^b |f'(t)| dt.$$

Ejercicio 4 Sean $G \subset \mathbb{R}^n$ abierto y $m \geq n$. Sea $f: G \to \mathbb{R}^m$ una función Lipstchitz e inyectiva entonces

$$\mathcal{H}^n(f(G)) = \int_G |J_f(x)| \, dx.$$

Ejercicio 5 Sean $G \subset \mathbb{R}^n$ abierto, $g: G \to \mathbb{R}$ una función Lipschitz y $\Gamma = \{(x, g(x)) : x \in G\}$ el gráfico de g. Entonces

$$\mathcal{H}^n(\Gamma) = \int_C \sqrt{1 + |\nabla g(x)|^2} \, dx.$$

Ejercicio 6 Sean $g:(a,b)\to\mathbb{R}^2$ una función Lipschitz positiva. Considerar el conjunto

$$M = \{x \in \mathbb{R} : \sqrt{x_1^2 + x_2^2} = g(x_3), \ a < x_3 < b\}.$$

Probar que

$$\mathcal{H}^2(M) = 2\pi \int_1^b g(t) \sqrt{1 + (g'(t))^2} dt.$$

Ejercicio 7 (Fórmula de Coárea) Sea $f: \mathbb{R}^n \to \mathbb{R}^m$ una función Lipschitz, con $n \geq m$. Entonces para todo conjunto $A \subset \mathbb{R}^n$ \mathcal{L}^n — medible vale

$$\int_{A} Jf \, dx = \int_{\mathbb{R}^m} \mathcal{H}^{m-n}(A \cap f^{-1}\{y\}) \, dy.$$

Ejercicio 8 (Cambio de Variables 2) Sea $f: \mathbb{R}^n \to \mathbb{R}^m$ una función Lipschitz, con $n \leq m$. Entonces para toda función $g: \mathbb{R}^n to \mathbb{R}$ \mathcal{L}^n sumable, tenemos que

$$g\Big|_{f^{-1}\{y\}}$$
 es \mathcal{H}^{n-m} – sumable $y-\mathcal{L}^m$ a.e.

у

$$\int_{\mathcal{R}^n} g(x)Jf(x) dx = \int_{\mathcal{R}^m} \left[\int_{f^{-1}\{y\}} g d\mathcal{H}^{n-m} \right] dy.$$

Ejercicio 9 Los Teoremas de Cambio de Variables basados en las fórmulas de Área y Coárea valen si la integral del lado izquierdo es finita, pero no es suficiente asumir en su lugar que la integral del lado derecho es finita. Hallar un contraejemplo. (Sugerencia: tomar n = m = 1).

Ejercicio 10 Sea u una función medible en \mathbb{R}^n . Probar que

$$\int_{\mathbb{R}^n} u(x) dx = \int_0^\infty \left(\int_{|x|=r} u(x) d\mathcal{H}^{n-1}(x) \right) dr.$$

si u es integrable.

Ejercicio 11 Suponiendo que $f: \mathbb{R}^n \to \mathbb{R}$ es Lipschitz, demostrar que

$$\int_{\mathbb{R}^n} |Df| \, dx = \int_{-\infty}^{\infty} \mathcal{H}^{n-1}(\{f=t\}) \, dt.$$

Ejercicio 12 Sea $f: \mathbb{R}^n \to \mathbb{R}$ un función Lipschitz, tal que

$$\operatorname{essinf}|Df| > 0.$$

Sea $g: \mathbb{R}^n \to \mathbb{R}$ \mathcal{L}^n -sumable. Probar que

$$\int_{\{f>t\}} g \, dx = \int_t^\infty \left(\int_{\{f=s\}} \frac{g}{|Df|} \, d\mathcal{H}^{n-1} \right) \, ds.$$

Ejercicio 13 Probar que $\mathcal{H}^{n-1}(\partial B(x,r)) = n\alpha_n r^{n-1}$ donde $\alpha_n = \mathcal{L}^n(B(0,1))$.

Ejercicio 14 Sea $v:[0,\infty)\to\mathbb{R}$. Probar que

$$\int_{\mathbb{R}^n} v(|x|) \, dx = n\alpha_n \int_0^\infty r^{n-1} v(r) \, dr$$

si cualquiera de las integrales tiene sentido.

Ejercicio 15 Probar que

$$\alpha_n = \frac{\pi^{n/2}}{\Gamma(\frac{n}{2} + 1)}.$$