1

Funciones de Sobolev.

Ejercicio 1 Mostrar que

- (a) $f(x) = |x| \in W^{1,p}(a,b)$ para todo $1 \le p \le \infty$ y para todo intervalo acotado (a,b) de \mathbb{R} .
- (b) $g(x) = |x|^{\alpha} \in H^1(-1,1)$ si y solo si $\alpha > \frac{1}{2}$.
- (c) $h(x) = \chi_{[0,1]}(x) \notin W^{1,p}(-1,1)$ para todo $1 \le p \le \infty$. Concluir que toda función que tiene un salto en un punto en $\mathbb R$ no pertenece a $W^{1,p}$.
- (d) $v(x) = |\ln |x||^k \in H^1(B(0,R))$ con $B(0,R) \subset \mathbb{R}^2$ y R > 0 si y solo si $0 < k < \frac{1}{2}$.

Ejercicio 2 Sea $\Omega \subset \mathbb{R}^N$ abierto.

(a) Probar que si $f,g\in L^1_{\mbox{loc}}(\Omega)$ y

$$\int_{\Omega} f\phi \, dx = \int_{\Omega} g\phi \, dx \quad \forall \phi \in C_c^1(\Omega)$$

entonces $f = g \ c.t.p \ \text{en} \ \Omega$.

(b) Mostrar que la derivada de debil de una función de Sobolev es unica.

Ejercicio 3 Sea $1 . Probar que <math>u \in W^{1,p}(\mathbb{R}^N)$ si y solo si $u \in L^p(\mathbb{R}^N)$ y

$$\left(\int_{\mathbb{R}^N} \left| \frac{u(x+h) - u(x)}{h} \right|^p dx \right)^{\frac{1}{p}}$$

es acotado para todo $h \in \mathbb{R}$.

Ejercicio 4 Sea $\Omega \subset \mathbb{R}^N$ abierto. Probar que $W^{k,p}(\Omega)$ es un espacio de Banach para todo $1 \leq p \leq \infty$ y $k \in \mathbb{N}_0$.

Ejercicio 5 Probar que $W^{k,p}(\mathbb{R}^N) = W_0^{k,p}(\mathbb{R}^N)$.

Ejercicio 6 Sean $\Omega \subset \mathbb{R}^N$ abierto. Definimos, para todo $\varepsilon > 0$, $\Omega_{\varepsilon} = \{x \in \Omega : \operatorname{dist}(x, \partial\Omega) > \varepsilon\}$, $\eta_{\varepsilon}(x) = \frac{1}{\varepsilon^N} \eta\left(\frac{x}{\varepsilon}\right) \ (x \in \mathbb{R}^N)$ donde η es el nucleo regularizante standar y para $f \in L^1_{\operatorname{loc}}(\Omega)$ definimos $f^{\varepsilon} = \eta_{\varepsilon} * f$. Probar que

- (a) $f^{\varepsilon} \in C^{\infty}(\Omega_{\varepsilon})$ para todo $\varepsilon > 0$.
- (b) Si $f \in C(\Omega)$, entonces $f^{\varepsilon} \to f$ uniformemente sobre subconjuntos compactos de Ω .
- (c) $f^{\varepsilon}(x) \to f(x)$ si x es un punto de Lebesgue de f; en particular, $f^{\varepsilon} \to f$ c.t.p.
- (d) Si $f \in W_{loc}^{1,p}(\Omega)$ para algun $1 \le p \le \infty$, entonces $\frac{\partial f^{\varepsilon}}{\partial x_i} = \eta_{\varepsilon} * \frac{\partial f}{\partial x_i}$ (i = 1, ..., N) en Ω_{ε} .
- $(e) \ {\rm Si} \ f \in W^{1,p}_{\mbox{\rm loc}}(\Omega) \ {\rm para \ algun} \ 1 \leq p < \infty, \ {\rm entonces} \ f^{\varepsilon} \to f \ {\rm en} \ W^{1,p}_{\mbox{\rm loc}}(\Omega).$

Ejercicio 7 Sea $\Omega\subset\mathbb{R}^N$ abierto. Probar que para todo $1\leq p<\infty$ vale que

(a) Si $f, g \in W^{1,p}(\Omega) \cap L^{\infty}(\Omega)$, entonce $fg \in W^{1,p}(\Omega) \cap L^{\infty}(\Omega)$ y

$$\frac{\partial (fg)}{\partial x_i} = \frac{\partial f}{\partial x_i}g + f\frac{\partial g}{\partial x_i} \quad c.t.p. \ (i = 1, 2, \dots, N).$$

(b) Si $f \in W^{1,p}(\Omega)$ y $F \in C^1(\mathbb{R})$, $F' \in L^{\infty}(\mathbb{R})$, F(0) = 0 entonces $F(f) \in W^{1,p}(\Omega)$ y

$$\frac{\partial F(f)}{\partial x_i} = F'(f) \frac{\partial f}{\partial x_i} \quad c.t.p. \ (i = 1, \dots, N).$$

(Si $|\Omega| < \infty$, la condición F(0) = 0 no es necesaria).

(c) Si $f \in W^{1,p}(\Omega)$, entonces $f^+, f^- \neq |f| \in W^{1,p}(\Omega)$ y

$$Df^{+} = \begin{cases} Df & c.t.p. \text{ en } \{f > 0\} \\ 0 & c.t.p. \text{ en } \{f \le 0\} \end{cases} \quad Df^{-} = \begin{cases} 0 & c.t.p. \text{ en } \{f \ge 0\} \\ -Df & c.t.p. \text{ en } \{f < 0\} \end{cases}$$
$$D|f| = \begin{cases} Df & c.t.p. \text{ en } \{f > 0\} \\ 0 & c.t.p. \text{ en } \{f = 0\} \\ -Df & c.t.p. \text{ en } \{f < 0\} \end{cases}$$

(d)
$$Df = 0$$
 c.t.p. en $\{f = 0\}$.

Ejercicio 8 Probar el Teorema de Traza para las funciones de Sobolev.

Ejercicio 9 Mostrar, mediante un ejemplo, que $W^{1,n}(B(0,1))$ no esta contenido en $L^{\infty}(B(0,1))$

Ejercicio 10 Mostrar una sucesión acotada en $W^{1,p}(U)$ con $1 \le p < n$ que no contenga ninguna subsucesion convergente en $L^{p^*}(U)$.

Ejercicio 11 Mostrar que el Teorema de compacidad de Rellich-Kondrashov es falso para dominios no acotados.

Ejercicio 12 Demostrar la desigualdad de Poincare

$$||f||_{L^p(U)} \le C||\nabla f||_{L^p(U)}$$

para toda $f \in C_c^1(U)$ donde C es independiente de f. Deducir que $\|\nabla f\|_{L^p(U)}$ es una norma equivalente a la usual en $W_0^{1,p}(U)$.

Ejercicio 13 Demostrar que la desigualdad de Poincare es cierta para funciones $f \in W^{1,p}(U)$ que tiene la propiedad $\mathcal{L}^n(\{f=0\}) \geq \alpha > 0$ con la constante dependiendo de α .

Ejercicio 14 Demostrar que, para $1 \le p \le \infty$, la inclusion $W^{1,p}(U) \subset L^p(U)$ es compacta.

Ejercicio 15 Demostrar la desigualdad de Sobolev-Poincare

$$\left(\oint_U |f - (f)_U|^q \, dy \right)^{1/q} \le C \left(\oint_U |\nabla f|^p \, dy \right)^{1/p}$$

para $f \in W^{1,p}(U), p < n \text{ y } 1 \le q < p^*.$

Usando esta desigualdad para U=B(0,1) y cambiando variables demostrar que

$$\left(\oint_{B(x,r)} |f - (f)_{x,r}|^q dy \right)^{1/q} \le Cr \left(\oint_{B(x,r)} |\nabla f|^p dy \right)^{1/p}.$$

(nota: f = integral promediada).