Topología Diferencial 2005

Práctica Uno: Introducción

- 1. Sean M y N variedades de clase C^r . Probar que una función $f: M \to N$ es de clase C^r si y sólo si para todo abierto W de algún \mathbb{R}^d y para todo función $g: W \to M$ de clase C^r , se cumple que $fg: W \to N$ es C^r .
- 2. Sea M variedad C^r y $A \subset M$ subespacio conexo. Probar que, si existe una retracción de clase C^r , es decir una función $r: M \to M$ tal que r(M) = A y $r|_A = id$, entonces A es una subvariedad C^r de M (sug: usar que r tiene rango constante cerca de A).
- 3. Sea $f: \mathbb{R}^n \to \mathbb{R}^k$ continua. Probar que existe Φ una estructura diferencial C^{∞} en $\mathbb{R}^n \times \mathbb{R}^k$ tal que la función $g: \mathbb{R}^n \to \mathbb{R}^n \times \mathbb{R}^k$ definida por g(x) = (x, f(x)) es un embedding C^{∞} (donde \mathbb{R}^n tiene la estructura diferencial usual y $\mathbb{R}^n \times \mathbb{R}^k$ la estructura Φ).
- 4. (Ejercicio Complicado) Probar que toda variedad conexa de dimensión 1 es difeomorfa a S^1 si es compacta y a \mathbb{R} si no es compacta.
- 5. Probar que toda función de clase C^r que es un C^1 -difeomorfismo, resulta un difeomorfismo C^r .
- 6. Probar que existe un difeomorfismo natural $T(M \times N) = TM \times TN$.
- 7. Sea $G \subset \mathbb{R} \times \mathbb{R}$ el gráfico de la función $g(x) = |x|^{1/3}$. Probar que G admite una estructura C^{∞} tal que la inclusión $G \to \mathbb{R} \times \mathbb{R}$ es C^{∞} .
- 8. Probar con un ejemplo que una inmersión inyectiva puede no ser un embedding. Probar además que, cuando la inmersión inyectiva proviene de una variedad compacta, entonces resulta embedding.
- 9. Sea M una variedad compacta C^1 . Probar que toda función $f: N \to \mathbb{R}$ de clase C^1 tiene al menos dos puntos críticos.
- 10. Sea $f: S^1 \to \mathbb{R}$ de clase C^1 y sea $y \in \mathbb{R}$ un valor regular. Probar que:
 - a) $f^{-1}(y)$ tiene un número par de puntos.
 - b) Si $f^{-1}(y)$ tiene 2k puntos, entonces f tiene al menos 2k puntos críticos.